YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

opt-350m-magicprompt-SD - AWQ

Original model description:

license: other tags: - generated_from_trainer - stable diffusion - diffusion - text2image - prompt augment - prompt engineering datasets: - Gustavosta/Stable-Diffusion-Prompts widget: - text: morning sun over Jakarta example_title: morning sun - text: 'WARNING: pip is' example_title: pip - text: sentient cheese example_title: sentient cheese - text: cheeps are example_title: cheeps - text: avocado armchair example_title: creative prompt - text: Landscape of example_title: landscape parameters: min_length: 16 max_length: 96 no_repeat_ngram_size: 1 do_sample: true base_model: facebook/opt-350m model-index: - name: opt-350m-magicprompt-SD results: []

opt-350m-magicprompt-SD

Generate/augment your prompt, stable diffusion style.

This model is a fine-tuned version of facebook/opt-350m on the Gustavosta/Stable-Diffusion-Prompts dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2987
  • eval_steps_per_second = 16.623
  • perplexity = 3.6644

example

jakarta

output (on DALL-E 2, but as words are words, works anywhere)

dalle2-jakarta

Training and evaluation data

refer to the Gustavosta/Stable-Diffusion-Prompts dataset.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 512
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss
2.8568 0.95 16 2.5937
2.2487 1.95 32 2.1050
1.9011 2.95 48 1.8082
1.6837 3.95 64 1.6178
1.4887 4.95 80 1.4897
1.3812 5.95 96 1.4017
1.2944 6.95 112 1.3437
1.2574 7.95 128 1.3127
1.2325 8.95 144 1.3009
1.2223 9.95 160 1.2987

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
2
Safetensors
Model size
69.6M params
Tensor type
I32
·
FP16
·
Inference API
Unable to determine this model's library. Check the docs .