Quantization made by Richard Erkhov.
open-llama-2-ko-7b - bnb 8bits
- Model creator: https://huggingface.co./beomi/
- Original model: https://huggingface.co./beomi/open-llama-2-ko-7b/
Original model description:
language: - ko - en pipeline_tag: text-generation inference: false tags: - facebook - meta - pytorch - llama - llama-2 - kollama - llama-2-ko license: mit library_name: transformers
Update Log
- 2023.12.14: Initial Release of Open-Llama-2-Ko
Open-Llama-2-Ko π¦π°π·
Open-Llama-2-Ko represents an advanced iteration of the Llama 2 model, featuring an expanded vocabulary and the inclusion of a Korean corpus for enhanced pretraining. Similar to its predecessor, Llama-2-Ko, this model operates within the range of generative text models, with parameter counts ranging from 7 billion to 70 billion. The focus of this repository is on the 7B pretrained version, designed to integrate seamlessly with the Hugging Face Transformers format.
The primary distinction between the Llama-2-Ko Series and Open-Llama-2-Ko lies in the dataset. Open-Llama-2-Ko exclusively utilizes publicly accessible Korean corpora, including sources such as AI Hub, Modu Corpus, λͺ¨λμ λ§λμΉ, and Korean Wikipedia.
As training was conducted solely with publicly available corpora, this model is open for unrestricted use by everyone, adhering to the MIT License*.
*MIT License under LLAMA 2 COMMUNITY LICENSE AGREEMENT
Model Details
Model Developers: Junbum Lee (Beomi)
Variations: Open-Llama-2-Ko will be available in different parameter sizes β 7B and 13B β along with various pretrained options.
Input: The model accepts only text input.
Output: The model produces text output exclusively.
Model Architecture:
Open-Llama-2-Ko is an auto-regressive language model that leverages an optimized transformer architecture derived from Llama-2.
Training Data | Parameters | Content Length | GQA | Tokens | Learning Rate | |
---|---|---|---|---|---|---|
Llama 2 | A curated mix of Publicly Accessible Korean Corpora | 7B | 2k | β | >15B* | 5e-5 |
Training Corpus
The model was trained using selected datasets from AIHub and Modu Corpus. Detailed information about the training datasets is available below:
- AI Hub: corpus/AI_HUB
- Only the
Training
segment of the data was used. - The
Validation
andTest
segments were deliberately excluded.
- Only the
- Modu Corpus: corpus/MODU_CORPUS
The final JSONL dataset used to train this model is approximately 61GB in size.
Total token count: Approximately 15 billion tokens (*using the expanded tokenizer. With the original Llama tokenizer, >60 billion tokens.)
Vocab Expansion
Model Name | Vocabulary Size | Description |
---|---|---|
Original Llama-2 | 32000 | Sentencepiece BPE |
Expanded Llama-2-Ko | 46336 | Sentencepiece BPE. Added Korean vocab and merges |
Tokenizing "μλ νμΈμ, μ€λμ λ μ¨κ° μ’λ€μ."
Model | Tokens |
---|---|
Llama-2 | ['β', 'μ', '<0xEB>', '<0x85>', '<0x95>', 'ν', 'μΈ', 'μ', ',', 'β', 'μ€', '<0xEB>', '<0x8A>', '<0x98>', 'μ', 'β', '<0xEB>', '<0x82>', '<0xA0>', 'μ¨', 'κ°', 'β', '<0xEC>', '<0xA2>', '<0x8B>', '<0xEB>', '<0x84>', '<0xA4>', 'μ'] |
Llama-2-Ko | ['βμλ
', 'νμΈμ', ',', 'βμ€λμ', 'βλ ', 'μ¨κ°', 'βμ’λ€μ'] |
Tokenizing "Llama 2: Open Foundation and Fine-Tuned Chat Models"
Model | Tokens |
---|---|
Llama-2 | ['βL', 'l', 'ama', 'β', '2', ':', 'βOpen', 'βFoundation', 'βand', 'βFine', '-', 'T', 'un', 'ed', 'βCh', 'at', 'βMod', 'els'] |
Llama-2-Ko | ['βL', 'l', 'ama', 'β', '2', ':', 'βOpen', 'βFoundation', 'βand', 'βFine', '-', 'T', 'un', 'ed', 'βCh', 'at', 'βMod', 'els'] |
LICENSE
MIT License under LLAMA 2 COMMUNITY LICENSE AGREEMENT
Model Benchmark
LM Eval Harness - Korean (polyglot branch)
- Used EleutherAI's lm-evaluation-harness https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot
TBD
Citation
TBD
Acknowledgements
- Training support was provided by the TPU Research Cloud program.
- The training corpus includes data from AI Hub, Modu Corpus, and Korean Wikipedia.
- Downloads last month
- 3