YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co./docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
Pretrain-Qwen-1.2B - GGUF
- Model creator: https://huggingface.co./MiniLLM/
- Original model: https://huggingface.co./MiniLLM/Pretrain-Qwen-1.2B/
Name | Quant method | Size |
---|---|---|
Pretrain-Qwen-1.2B.Q2_K.gguf | Q2_K | 0.51GB |
Pretrain-Qwen-1.2B.Q3_K_S.gguf | Q3_K_S | 0.57GB |
Pretrain-Qwen-1.2B.Q3_K.gguf | Q3_K | 0.61GB |
Pretrain-Qwen-1.2B.Q3_K_M.gguf | Q3_K_M | 0.61GB |
Pretrain-Qwen-1.2B.Q3_K_L.gguf | Q3_K_L | 0.63GB |
Pretrain-Qwen-1.2B.IQ4_XS.gguf | IQ4_XS | 0.65GB |
Pretrain-Qwen-1.2B.Q4_0.gguf | Q4_0 | 0.67GB |
Pretrain-Qwen-1.2B.IQ4_NL.gguf | IQ4_NL | 0.67GB |
Pretrain-Qwen-1.2B.Q4_K_S.gguf | Q4_K_S | 0.69GB |
Pretrain-Qwen-1.2B.Q4_K.gguf | Q4_K | 0.72GB |
Pretrain-Qwen-1.2B.Q4_K_M.gguf | Q4_K_M | 0.72GB |
Pretrain-Qwen-1.2B.Q4_1.gguf | Q4_1 | 0.72GB |
Pretrain-Qwen-1.2B.Q5_0.gguf | Q5_0 | 0.78GB |
Pretrain-Qwen-1.2B.Q5_K_S.gguf | Q5_K_S | 0.79GB |
Pretrain-Qwen-1.2B.Q5_K.gguf | Q5_K | 0.81GB |
Pretrain-Qwen-1.2B.Q5_K_M.gguf | Q5_K_M | 0.81GB |
Pretrain-Qwen-1.2B.Q5_1.gguf | Q5_1 | 0.83GB |
Pretrain-Qwen-1.2B.Q6_K.gguf | Q6_K | 0.93GB |
Pretrain-Qwen-1.2B.Q8_0.gguf | Q8_0 | 1.15GB |
Original model description:
library_name: transformers license: apache-2.0 datasets: - monology/pile-uncopyrighted - MiniLLM/pile-tokenized language: - en metrics: - accuracy pipeline_tag: text-generation
Pretrain-Qwen-1.2B
Pretrain-Qwen-1.2B is a 1.2B model with Qwen achitecture conventionally pre-trained from scratch on the Pile for 50B tokens.
We also open-source the tokenized pre-training corpus for reproducibility.
It is used as the baseline for MiniLLM-Qwen-1.2B
Evaluation
MiniPLM models achieves better performance given the same computation and scales well across model sizes:
Other Baselines
Citation
@article{miniplm,
title={MiniPLM: Knowledge Distillation for Pre-Training Language Models},
author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang},
journal={arXiv preprint arXiv:2410.17215},
year={2024}
}
- Downloads last month
- 295