RichardErkhov's picture
uploaded readme
0d58fd0 verified
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
MiniPLM-Qwen-500M - GGUF
- Model creator: https://huggingface.co./MiniLLM/
- Original model: https://huggingface.co./MiniLLM/MiniPLM-Qwen-500M/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [MiniPLM-Qwen-500M.Q2_K.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q2_K.gguf) | Q2_K | 0.23GB |
| [MiniPLM-Qwen-500M.Q3_K_S.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q3_K_S.gguf) | Q3_K_S | 0.25GB |
| [MiniPLM-Qwen-500M.Q3_K.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q3_K.gguf) | Q3_K | 0.26GB |
| [MiniPLM-Qwen-500M.Q3_K_M.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q3_K_M.gguf) | Q3_K_M | 0.26GB |
| [MiniPLM-Qwen-500M.Q3_K_L.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q3_K_L.gguf) | Q3_K_L | 0.28GB |
| [MiniPLM-Qwen-500M.IQ4_XS.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.IQ4_XS.gguf) | IQ4_XS | 0.28GB |
| [MiniPLM-Qwen-500M.Q4_0.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q4_0.gguf) | Q4_0 | 0.29GB |
| [MiniPLM-Qwen-500M.IQ4_NL.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.IQ4_NL.gguf) | IQ4_NL | 0.29GB |
| [MiniPLM-Qwen-500M.Q4_K_S.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q4_K_S.gguf) | Q4_K_S | 0.29GB |
| [MiniPLM-Qwen-500M.Q4_K.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q4_K.gguf) | Q4_K | 0.3GB |
| [MiniPLM-Qwen-500M.Q4_K_M.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q4_K_M.gguf) | Q4_K_M | 0.3GB |
| [MiniPLM-Qwen-500M.Q4_1.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q4_1.gguf) | Q4_1 | 0.3GB |
| [MiniPLM-Qwen-500M.Q5_0.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q5_0.gguf) | Q5_0 | 0.32GB |
| [MiniPLM-Qwen-500M.Q5_K_S.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q5_K_S.gguf) | Q5_K_S | 0.32GB |
| [MiniPLM-Qwen-500M.Q5_K.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q5_K.gguf) | Q5_K | 0.33GB |
| [MiniPLM-Qwen-500M.Q5_K_M.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q5_K_M.gguf) | Q5_K_M | 0.33GB |
| [MiniPLM-Qwen-500M.Q5_1.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q5_1.gguf) | Q5_1 | 0.34GB |
| [MiniPLM-Qwen-500M.Q6_K.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q6_K.gguf) | Q6_K | 0.36GB |
| [MiniPLM-Qwen-500M.Q8_0.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q8_0.gguf) | Q8_0 | 0.47GB |
Original model description:
---
library_name: transformers
license: apache-2.0
datasets:
- monology/pile-uncopyrighted
- MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
---
# MinPLM-Qwen-500M
[paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM)
**MiniPLM-Qwen-500M** is a 500M model with Qwen achitecture pre-trained from scratch on [the Pile](https://huggingface.co./datasets/monology/pile-uncopyrighted) using the MiniPLM knowledge distillation framework with the [offcial Qwen1.5-1.8B](https://huggingface.co./Qwen/Qwen1.5-1.8B) as the teacher model.
We also open-source the [pre-training corpus](https://huggingface.co./datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5) refined by Difference Sampling in MiniPLM for reproducibility.
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/2BqT0NgkmIXYlktovw9kG.png" width="1000">
</p>
## Evaluation
MiniPLM models achieves better performance given the same computation and scales well across model sizes:
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/EOYzajQcwQFT5PobqL3j0.png" width="1000">
</p>
## Baseline Models
+ [Conventional Pre-Training](https://huggingface.co./MiniLLM/Pretrain-Qwen-500M)
+ [VanillaKD](https://huggingface.co./MiniLLM/VanillaKD-Pretrain-Qwen-500M)
## Citation
```bibtex
@article{miniplm,
title={MiniPLM: Knowledge Distillation for Pre-Training Language Models},
author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang},
journal={arXiv preprint arXiv:2410.17215},
year={2024}
}
```