Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

MiniChat-1.5-3B - bnb 8bits

Original model description:

language: - en - zh license: apache-2.0 library_name: transformers widget: - text: [|User|] Hi 👋 [|Assistant|] model-index: - name: MiniChat-1.5-3B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 46.5 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 68.28 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 46.67 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 50.71 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 65.04 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 24.18 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-1.5-3B name: Open LLM Leaderboard

MiniChat-1.5-3B

📑 arXiv | 👻 GitHub | 🤗 HuggingFace-MiniMA | 🤗 HuggingFace-MiniChat | 🤗 HuggingFace-MiniChat-1.5 | 🤖 ModelScope-MiniMA | 🤖 ModelScope-MiniChat

🆕 Updates from MiniChat-3B:

  • better data mixture;
  • use of NEFTune;
  • use of DPO.

❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.

A language model distilled and finetuned from an adapted version of LLaMA2-7B following "Towards the Law of Capacity Gap in Distilling Language Models".

Outperforming a wide range of 3B competitors in GPT4 evaluation and even competing with several 7B chat models.

teaser_b

The following is an example code snippet to use MiniChat-3B:

import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

from conversation import get_default_conv_template

# MiniChat
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-3B", use_fast=False)
# GPU.
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
# CPU.
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()

conv = get_default_conv_template("minichat")

question = "Implement a program to find the common elements in two arrays without using any extra data structures."
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
    torch.as_tensor(input_ids).cuda(),
    do_sample=True,
    temperature=0.7,
    max_new_tokens=1024,
)
output_ids = output_ids[0][len(input_ids[0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# output: "def common_elements(arr1, arr2):\n    if len(arr1) == 0:\n        return []\n    if len(arr2) == 0:\n        return arr1\n\n    common_elements = []\n    for element in arr1:\n        if element in arr2:\n            common_elements.append(element)\n\n    return common_elements"
# Multiturn conversation could be realized by continuously appending questions to `conv`.

Bibtex

@article{zhang2023law,
    title={Towards the Law of Capacity Gap in Distilling Language Models},
    author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
    year={2023},
    url={https://arxiv.org/abs/2311.07052}
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 50.23
AI2 Reasoning Challenge (25-Shot) 46.50
HellaSwag (10-Shot) 68.28
MMLU (5-Shot) 46.67
TruthfulQA (0-shot) 50.71
Winogrande (5-shot) 65.04
GSM8k (5-shot) 24.18
Downloads last month
2
Safetensors
Model size
3.02B params
Tensor type
F32
·
FP16
·
I8
·
Inference API
Unable to determine this model's library. Check the docs .