rubert-base-srl-seqlabeling

This model is a fine-tuned version of ./ruBert-base/ on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1723
  • Causator Precision: 0.8539
  • Causator Recall: 0.8352
  • Causator F1: 0.8444
  • Causator Number: 91
  • Expiriencer Precision: 0.9259
  • Expiriencer Recall: 0.9740
  • Expiriencer F1: 0.9494
  • Expiriencer Number: 77
  • Instrument Precision: 0.375
  • Instrument Recall: 1.0
  • Instrument F1: 0.5455
  • Instrument Number: 3
  • Other Precision: 0.0
  • Other Recall: 0.0
  • Other F1: 0.0
  • Other Number: 1
  • Predicate Precision: 0.9352
  • Predicate Recall: 0.9902
  • Predicate F1: 0.9619
  • Predicate Number: 102
  • Overall Precision: 0.8916
  • Overall Recall: 0.9307
  • Overall F1: 0.9107
  • Overall Accuracy: 0.9667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Causator Precision Causator Recall Causator F1 Causator Number Expiriencer Precision Expiriencer Recall Expiriencer F1 Expiriencer Number Instrument Precision Instrument Recall Instrument F1 Instrument Number Other Precision Other Recall Other F1 Other Number Predicate Precision Predicate Recall Predicate F1 Predicate Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.2552 1.0 56 0.3471 0.8841 0.6703 0.7625 91 0.8421 0.8312 0.8366 77 0.0 0.0 0.0 3 0.0 0.0 0.0 1 0.9259 0.9804 0.9524 102 0.8893 0.8212 0.8539 0.9203
0.2385 2.0 112 0.1608 0.9103 0.7802 0.8402 91 0.9375 0.9740 0.9554 77 0.2857 0.6667 0.4 3 0.0 0.0 0.0 1 0.9519 0.9706 0.9612 102 0.9182 0.9015 0.9098 0.9554
0.0367 3.0 168 0.1311 0.8902 0.8022 0.8439 91 0.9375 0.9740 0.9554 77 0.4286 1.0 0.6 3 0.0 0.0 0.0 1 0.9709 0.9804 0.9756 102 0.9228 0.9161 0.9194 0.9673
0.0494 4.0 224 0.1507 0.7812 0.8242 0.8021 91 0.9241 0.9481 0.9359 77 0.4286 1.0 0.6 3 0.0 0.0 0.0 1 0.9524 0.9804 0.9662 102 0.8746 0.9161 0.8948 0.9637
0.0699 5.0 280 0.1830 0.8276 0.7912 0.8090 91 0.8941 0.9870 0.9383 77 0.375 1.0 0.5455 3 0.0 0.0 0.0 1 0.9352 0.9902 0.9619 102 0.875 0.9197 0.8968 0.9560
0.0352 6.0 336 0.1994 0.7857 0.8462 0.8148 91 0.9048 0.9870 0.9441 77 0.375 1.0 0.5455 3 0.0 0.0 0.0 1 0.9266 0.9902 0.9573 102 0.8595 0.9380 0.8970 0.9572
0.0186 7.0 392 0.1657 0.8652 0.8462 0.8556 91 0.9146 0.9740 0.9434 77 0.375 1.0 0.5455 3 0.0 0.0 0.0 1 0.9352 0.9902 0.9619 102 0.8920 0.9343 0.9127 0.9673
0.0052 8.0 448 0.1716 0.8556 0.8462 0.8508 91 0.9259 0.9740 0.9494 77 0.375 1.0 0.5455 3 0.0 0.0 0.0 1 0.9352 0.9902 0.9619 102 0.8920 0.9343 0.9127 0.9673
0.0094 9.0 504 0.1715 0.8444 0.8352 0.8398 91 0.9259 0.9740 0.9494 77 0.4286 1.0 0.6 3 0.0 0.0 0.0 1 0.9352 0.9902 0.9619 102 0.8916 0.9307 0.9107 0.9667
0.0078 10.0 560 0.1723 0.8539 0.8352 0.8444 91 0.9259 0.9740 0.9494 77 0.375 1.0 0.5455 3 0.0 0.0 0.0 1 0.9352 0.9902 0.9619 102 0.8916 0.9307 0.9107 0.9667

Framework versions

  • Transformers 4.13.0.dev0
  • Pytorch 1.10.0+cu102
  • Datasets 1.15.1
  • Tokenizers 0.10.3
Downloads last month
37
Safetensors
Model size
178M params
Tensor type
I64
ยท
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using Rexhaif/rubert-base-srl-seqlabeling 2