metadata
language:
- uk
license: apache-2.0
datasets:
- mozilla-foundation/common_voice_11_0
model-index:
- name: ukrainian-data2vec-asr
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: uk
split: test
args: uk
metrics:
- name: Wer
type: wer
value: 17.04228333878635
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: uk
split: validation
args: uk
metrics:
- name: Wer
type: wer
value: 17.6343500009732
Respeecher/ukrainian-data2vec-asr
This model is a fine-tuned version of Respeecher/ukrainian-data2vec on the Common Voice 11.0 dataset Ukrainian Train part. It achieves the following results:
- eval_wer: 17.634350000973198
- test_wer: 17.042283338786351
How to Get Started with the Model
from transformers import AutoProcessor, Data2VecAudioForCTC
import torch
from datasets import load_dataset, Audio
dataset = load_dataset("mozilla-foundation/common_voice_11_0", "uk", split="test")
# Resample
dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
processor = AutoProcessor.from_pretrained("Respeecher/ukrainian-data2vec-asr")
model = Data2VecAudioForCTC.from_pretrained("Respeecher/ukrainian-data2vec-asr")
model.eval()
sampling_rate = dataset.features["audio"].sampling_rate
inputs = processor(dataset[1]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
transcription[0]
Training Details
Training code and instructions are available on our github