RenAaron Ellis
Training in progress epoch 4
bbe109a
|
raw
history blame
2.42 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - tensorflow
  - vision
  - generated_from_keras_callback
model-index:
  - name: RenSurii/vit-base-patch16-224-in21k-finetuned-image-classification
    results: []

RenSurii/vit-base-patch16-224-in21k-finetuned-image-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the mnist dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.5080
  • Train Accuracy: 0.958
  • Validation Loss: 0.4289
  • Validation Accuracy: 0.9580
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': 1.0, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
2.0110 0.8531 1.5291 0.8531 0
1.3596 0.9151 0.9948 0.9151 1
0.9608 0.9302 0.7593 0.9302 2
0.6974 0.9448 0.5795 0.9448 3
0.5080 0.958 0.4289 0.9580 4

Framework versions

  • Transformers 4.47.0.dev0
  • TensorFlow 2.18.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3