mistral_extended_darulm_20_05_24_part1-2_32000_bpe_full_lr1e4_bs256
This model is a fine-tuned version of RefalMachine/mistral_extended_darulm_20_05_24_part1-2_32000_bpe_mean_init_03_07_24 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.0635
- Accuracy: 0.5602
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.3955 | 0.05 | 2000 | 2.1922 | 0.5420 |
2.3675 | 0.09 | 4000 | 2.1648 | 0.5452 |
2.3365 | 0.14 | 6000 | 2.1490 | 0.5473 |
2.3455 | 0.18 | 8000 | 2.1394 | 0.5484 |
2.3244 | 0.23 | 10000 | 2.1293 | 0.5498 |
2.3287 | 0.27 | 12000 | 2.1223 | 0.5511 |
2.3158 | 0.32 | 14000 | 2.1145 | 0.5521 |
2.3154 | 0.36 | 16000 | 2.1067 | 0.5533 |
2.2754 | 0.41 | 18000 | 2.1002 | 0.5542 |
2.3085 | 0.45 | 20000 | 2.0934 | 0.5552 |
2.2918 | 0.5 | 22000 | 2.0869 | 0.5565 |
2.2725 | 0.54 | 24000 | 2.0813 | 0.5573 |
2.286 | 0.59 | 26000 | 2.0756 | 0.5582 |
2.2879 | 0.63 | 28000 | 2.0717 | 0.5588 |
2.2864 | 0.68 | 30000 | 2.0684 | 0.5594 |
2.258 | 0.72 | 32000 | 2.0662 | 0.5598 |
2.2726 | 0.77 | 34000 | 2.0648 | 0.5601 |
2.2586 | 0.81 | 36000 | 2.0640 | 0.5602 |
2.2568 | 0.86 | 38000 | 2.0636 | 0.5602 |
2.2492 | 0.9 | 40000 | 2.0635 | 0.5602 |
2.2676 | 0.95 | 42000 | 2.0635 | 0.5603 |
2.2567 | 0.99 | 44000 | 2.0635 | 0.5602 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 26
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.