llama3_extended_darulm_20_05_24_part1-2_64000_bpe_full_lr2e4_bs256
This model is a fine-tuned version of RefalMachine/llama3_extended_darulm_20_05_24_part1-2_64000_bpe_mean_init_03_07_24 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.1110
- Accuracy: 0.5557
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.3943 | 0.05 | 2000 | 2.2403 | 0.5372 |
2.3516 | 0.09 | 4000 | 2.2045 | 0.5420 |
2.3015 | 0.14 | 6000 | 2.1876 | 0.5441 |
2.3267 | 0.18 | 8000 | 2.1734 | 0.5459 |
2.313 | 0.23 | 10000 | 2.1640 | 0.5470 |
2.2994 | 0.27 | 12000 | 2.1560 | 0.5484 |
2.294 | 0.32 | 14000 | 2.1481 | 0.5496 |
2.2827 | 0.37 | 16000 | 2.1426 | 0.5506 |
2.2741 | 0.41 | 18000 | 2.1352 | 0.5516 |
2.2575 | 0.46 | 20000 | 2.1299 | 0.5524 |
2.2968 | 0.5 | 22000 | 2.1251 | 0.5534 |
2.2605 | 0.55 | 24000 | 2.1209 | 0.5540 |
2.2603 | 0.59 | 26000 | 2.1180 | 0.5546 |
2.2543 | 0.64 | 28000 | 2.1153 | 0.5550 |
2.2338 | 0.68 | 30000 | 2.1136 | 0.5553 |
2.2405 | 0.73 | 32000 | 2.1124 | 0.5554 |
2.2507 | 0.78 | 34000 | 2.1116 | 0.5557 |
2.2328 | 0.82 | 36000 | 2.1113 | 0.5557 |
2.256 | 0.87 | 38000 | 2.1111 | 0.5556 |
2.2443 | 0.91 | 40000 | 2.1110 | 0.5557 |
2.2526 | 0.96 | 42000 | 2.1110 | 0.5557 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.