Hikari Noob v-pred 1.0.1

Civitai model page: https://civitai.com/models/938672

Fine-tuned NoobAI-XL(ν-prediction) and merged SPO LoRA

NoobAI-XL(ν-prediction)をファインチューンし、SPOをマージしました。

Features/特徴

  • Improved stability and quality.
  • Fixed a problem in which the quality of output was significantly degraded when the number of tokens exceeded 76.
  • The base style is not strong and can be restyled by prompts or LoRAs.
  • This model does not include any base model other than NoobAI (v-prediction), so it has the equivalent knowledge. You can generate characters that have appeared by August 2024.
  • 安定性と品質を改善
  • トークン数が76を超えると出力の品質が著しく低下する問題を修正しました。
  • 素の画風は強くないので、プロンプトやLoRAによる画風変更ができます。
  • このモデルはNoobAI(v-prediction版)以外のベースモデルを一切含まず、それと同等の知識があります。2024年8月までに登場したキャラクターを生成できます。

About 1.0.1

  • Better stability?

Requirements / 動作要件

  • AUTOMATIC1111 WebUI on dev branch / devブランチ上のAUTOMATIC1111 WebUI
  • Latest version of ComfyUI / 最新版のComfyUI
  • Latest version of Forge or reForge / 最新版のForgeまたはreForge

Instruction for AUTOMATIC1111 / AUTOMATIC1111の導入手順

  1. Switch branch to dev (Run this command in the root directory of the webui: git checkout -b dev origin/dev or use Github Desktop)
  2. Use the model as usual!

(日本語)

  1. devブランチに切り替えます(次のコマンドをwebui直下で実行します: git checkout -b dev origin/dev またはGithub Desktopを使う)
  2. 通常通りモデルを使用します。

Prompt Guidelines / プロンプト記法

Almost same as the base model/ベースモデルとおおむね同じ

To improve the quality of background, add simple background, transparent background to Negative Prompt.

Recommended Prompt / 推奨プロンプト

Positive: None/無し(Works good without masterpiece, best quality / masterpiece, best quality無しでおk)

Negative: worst quality, low quality, bad quality, lowres, photoshop \(medium\), abstract or empty

Recommended Settings / 推奨設定

Steps: 12-24

Scheduler: Simple or SGM Uniform

Guidance Scale: 2-5(best value is 4)

Recommended Samplers

  • DPM++ 2M
  • DPM++ 3M SDE
  • Euler/Euler a other samplers will not work properly.

Hires.fix

Hires upscaler: 4x-UltraSharp or Latent(nearest-exact)

Denoising strength: 0.4-0.5(0.65-0.7 for latent)

Merge recipe(Weighted sum)

  • Stage 1: Finetune Noob v-pred 1.0 and merge(see below) *A-K: noobai(v-pred)-based custom checkpoint
  • A * 0.6 + B * 0.4 = tmp1
  • tmp1 * 0.6 + C * 0.4 = tmp2
  • tmp2 * 0.7 + F * 0.3 = tmp3
  • tmp3 * 0.7 + E * 0.3 = tmp4
  • tmp4 * 0.6 + D * 0.4 = tmp5
  • tmp5 * 0.7 + G * 0.3 = tmp6
  • Make H,I,J,K from tmp6
  • tmp6 * 0.75 + H * 0.25 = tmp7
  • tmp7 * 0.7 + I * 0.3 = tmp8
  • tmp8 * 0.7 + J * 0.3 = tmp9
  • tmp9 * 0.9 + K * 0.1 = tmp10
  • tmp10 + SPO LoRA * 1 + sdxl-flat * -0.25 + sdxl-boldline * -1 = tmp11
  • Adjust tmp11(0.2,0.2,0.2,0.05,0,0,0,0) = Result

Training scripts:

sd-scripts

Notice

This model is licensed under Fair AI Public License 1.0-SD

If you make modify this model, you must share both your changes and the original license.

You are prohibited from monetizing any close-sourced fine-tuned / merged model, which disallows the public from accessing the model's source code / weights and its usages.

Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for RedRayz/hikari_noob_1.0.1