Edit model card

flux-juggalos-lokr

This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

a juggalo holding a sign that says keepin it real

Validation settings

  • CFG: 3.4
  • CFG Rescale: 0.0
  • Steps: 25
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
a juggalo performing miracles at a festival
Negative Prompt
blurry, cropped, ugly
Prompt
a juggalo man and woman in a close-up portrait smiling and happy
Negative Prompt
blurry, cropped, ugly
Prompt
a juggalo family portrait
Negative Prompt
blurry, cropped, ugly
Prompt
a juggalo teacher giving a lesson to a classroom of juggalo students
Negative Prompt
blurry, cropped, ugly
Prompt
a toddler juggalo criminal mugshot 1998 olan mills studio photography
Negative Prompt
blurry, cropped, ugly
Prompt
a baby juggalo welder working on the titanic, 1912, sepia
Negative Prompt
blurry, cropped, ugly
Prompt
a baby juggalo news anchor on the insane clown news network wearing glasses
Negative Prompt
blurry, cropped, ugly
Prompt
a juggalo holding a sign that says keepin it real
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 8
  • Training steps: 2500
  • Learning rate: 5e-06
  • Effective batch size: 12
    • Micro-batch size: 6
    • Gradient accumulation steps: 1
    • Number of GPUs: 2
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: optimi-lion
  • Precision: bf16
  • Quantised: No
  • Xformers: Not used
  • LyCORIS Config:
{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 16,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 16
            },
            "FeedForward": {
                "factor": 8
            }
        }
    }
}

Datasets

juggalos-aspect-bucket

  • Repeats: 10
  • Total number of images: ~26
  • Total number of aspect buckets: 7
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

juggalos-crop

  • Repeats: 10
  • Total number of images: ~22
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square

juggalos-aspect-bucket-1mp

  • Repeats: 10
  • Total number of images: ~26
  • Total number of aspect buckets: 8
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

juggalos-crop-1mp

  • Repeats: 10
  • Total number of images: ~20
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()

prompt = "a juggalo holding a sign that says keepin it real"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=25,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.4,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
30
Inference API
Examples

Model tree for RareConcepts/Flux.1-dev-LoKr-Juggalos

Adapter
(7650)
this model