metadata
license: apache-2.0
tags:
- pretrained
- mistral
- protein
Model Card for Mistral-Prot-v1-134M (Mistral for protein)
The Mistral-Prot-v1-134M Large Language Model (LLM) is a pretrained generative protein molecule model with 133.8M parameters. It is derived from Mixtral-8x7B-v0.1 model, which was simplified for protein: the number of layers and the hidden size were reduced. The model was pretrained using 10M protein strings from the uniprot 50 database.
Model Architecture
Like Mixtral-8x7B-v0.1, it is a transformer model, with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
- Mixture of Experts
Load the model from huggingface:
import torch
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("RaphaelMourad/Mistral-Prot-v1-134M", trust_remote_code=True)
model = AutoModel.from_pretrained("RaphaelMourad/Mistral-Prot-v1-134M", trust_remote_code=True)
Calculate the embedding of a protein sequence
insulin = "MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN"
inputs = tokenizer(insulin, return_tensors = 'pt')["input_ids"]
hidden_states = model(inputs)[0] # [1, sequence_length, 256]
# embedding with max pooling
embedding_max = torch.max(hidden_states[0], dim=0)[0]
print(embedding_max.shape) # expect to be 256
Troubleshooting
Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer.
Notice
Mistral-Prot-v1-134M is a pretrained base model for protein.
Contact
Raphaël Mourad. [email protected]