massive_indo
This model is a fine-tuned version of xxxxxxxxx on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 0.6883
- F1: 0.8201
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
2.1343 | 0.11 | 2000 | 1.7374 | 0.2664 |
1.2506 | 0.22 | 4000 | 1.1294 | 0.5441 |
0.9268 | 0.33 | 6000 | 0.8991 | 0.6547 |
0.7993 | 0.44 | 8000 | 0.8401 | 0.6819 |
0.6985 | 0.54 | 10000 | 0.7629 | 0.7245 |
0.6418 | 0.65 | 12000 | 0.7507 | 0.7559 |
0.5887 | 0.76 | 14000 | 0.6858 | 0.7796 |
0.5462 | 0.87 | 16000 | 0.6852 | 0.7872 |
0.508 | 0.98 | 18000 | 0.6731 | 0.7836 |
0.4222 | 1.09 | 20000 | 0.6884 | 0.7902 |
0.3948 | 1.2 | 22000 | 0.6809 | 0.7897 |
0.3947 | 1.31 | 24000 | 0.6894 | 0.7935 |
0.3779 | 1.42 | 26000 | 0.6702 | 0.8026 |
0.3488 | 1.53 | 28000 | 0.6762 | 0.7935 |
0.3461 | 1.63 | 30000 | 0.6737 | 0.8054 |
0.3372 | 1.74 | 32000 | 0.6720 | 0.8062 |
0.3275 | 1.85 | 34000 | 0.6526 | 0.8156 |
0.3224 | 1.96 | 36000 | 0.6717 | 0.8068 |
0.2425 | 2.07 | 38000 | 0.6810 | 0.8143 |
0.2423 | 2.18 | 40000 | 0.6668 | 0.8196 |
0.2394 | 2.29 | 42000 | 0.7014 | 0.8125 |
0.2247 | 2.4 | 44000 | 0.6842 | 0.8167 |
0.2253 | 2.51 | 46000 | 0.7012 | 0.8130 |
0.2225 | 2.62 | 48000 | 0.6907 | 0.8178 |
0.2074 | 2.72 | 50000 | 0.6814 | 0.8206 |
0.2095 | 2.83 | 52000 | 0.6928 | 0.8192 |
0.2018 | 2.94 | 54000 | 0.6883 | 0.8201 |
Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.