Uploaded model

  • Developed by: Ramikan-BR
  • Model type: [text-generation/Python Coder]
  • Language(s) (NLP): [en]
  • License: apache-2.0
  • Finetuned from model : unsloth/tinyllama-chat-bnb-4bit

Model Description

Training Data

datasets: Ramikan-BR/data-oss_instruct-decontaminated_python.jsonl

Training Procedure

The model was refined using Unsloath. The dataset ise-uiuc/Magicoder-OSS-Instruct-75K was adjusted, leaving only data on python and divided into 10 parts, each refinement occurred for 2 epochs, using adafactor optimizer or adamw_8bit (adafactor seems to deliver less loss).

Model Sources [optional]

base_model: unsloth/tinyllama-chat-bnb-4bit

model: Ramikan-BR/tinyllama-coder-py-4bit-v10 gguf_f16: tinyllama-coder-py-4bit-v10-unsloth.F16.gguf gguf_Q4_K_M: tinyllama-coder-py-4bit-v10-unsloth.Q4_K_M.gguf gguf_Q8_0: tinyllama-coder-py-4bit-v10-unsloth.Q8_0.gguf

Training Hyperparameters

Notebook Unsloath that I used for AI refinement: TinyLlama


%%capture
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps xformers trl peft accelerate bitsandbytes # xformers "xformers<0.0.26"

import os
from google.colab import drive
drive.mount('/content/drive')

from unsloth import FastLanguageModel
import torch
max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
    "unsloth/mistral-7b-bnb-4bit",
    "unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
    "unsloth/llama-2-7b-bnb-4bit",
    "unsloth/llama-2-13b-bnb-4bit",
    "unsloth/codellama-34b-bnb-4bit",
    "unsloth/tinyllama-bnb-4bit",
    "unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster!
    "unsloth/gemma-2b-bnb-4bit",
] # More models at https://huggingface.co./unsloth

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "Ramikan-BR/tinyllama-coder-py-4bit_LORA-v9", # "unsloth/tinyllama" for 16bit loading
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)

model = FastLanguageModel.get_peft_model(
    model,
    r = 256, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 512,
    lora_dropout = 0, # Currently only supports dropout = 0
    bias = "none",    # Currently only supports bias = "none"
    use_gradient_checkpointing = True, # @@@ IF YOU GET OUT OF MEMORY - set to True @@@
    random_state = 3407,
    use_rslora = False,  # We support rank stabilized LoRA
    loftq_config = None, # And LoftQ
)

alpaca_prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Input:
{}

### Output:
{}"""

EOS_TOKEN = tokenizer.eos_token
def formatting_prompts_func(examples):
    inputs       = examples["problem"]
    outputs      = examples["solution"]
    texts = []
    for input, output in zip(inputs, outputs):
        # Must add EOS_TOKEN, otherwise your generation will go on forever!
        text = alpaca_prompt.format(input, output) + EOS_TOKEN
        texts.append(text)
    return { "text" : texts}
pass

from datasets import load_dataset
dataset = load_dataset('json', data_files='/content/drive/MyDrive/data-oss_instruct-py-10.jsonl', split='train')
dataset = dataset.map(formatting_prompts_func, batched=True)

from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
from transformers.utils import logging
logging.set_verbosity_info()

trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset = dataset,
    dataset_text_field = "text",
    max_seq_length = max_seq_length,
    dataset_num_proc = 2,
    packing = True, # Packs short sequences together to save time!
    args = TrainingArguments(
        per_device_train_batch_size = 2,
        gradient_accumulation_steps = 256,
        warmup_ratio = 0.1,
        num_train_epochs = 2,
        learning_rate = 2e-4,
        fp16 = not torch.cuda.is_bf16_supported(),
        bf16 = torch.cuda.is_bf16_supported(),
        logging_steps = 1,
        optim = "adafactor", # adamw_torch ou adamw_torch_fused +10% velocidade ou adafactor ou adamw_8bit
        weight_decay = 0.1,
        lr_scheduler_type = "linear",
        seed = 3407,
        output_dir = "outputs",
    ),
)

trainer_stats = trainer.train()

model.save_pretrained("lora_model") # Local saving
tokenizer.save_pretrained("lora_model")
model.push_to_hub("Ramikan-BR/tinyllama-coder-py-4bit_LORA-v10", token = "hf_...") # Online saving
tokenizer.push_to_hub("Ramikan-BR/tinyllama-coder-py-4bit_LORA-v10", token = "hf_...") # Online saving

# Merge to 16bit
model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",)
model.push_to_hub_merged("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, save_method = "merged_16bit", token = "hf_...")

# Merge to 4bit
if False: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",)
if False: model.push_to_hub_merged("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, save_method = "merged_4bit", token = "hf_...")

# Just LoRA adapters
if False: model.save_pretrained_merged("model", tokenizer, save_method = "lora",)
if False: model.push_to_hub_merged("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, save_method = "lora", token = "hf_...")

# Save to 8bit Q8_0
model.save_pretrained_gguf("model", tokenizer,)
model.push_to_hub_gguf("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, token = "hf_...")

# Save to 16bit GGUF
model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16")
model.push_to_hub_gguf("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, quantization_method = "f16", token = "hf_...")

# Save to q4_k_m GGUF
model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")
model.push_to_hub_gguf("Ramikan-BR/tinyllama-coder-py-4bit-v10", tokenizer, quantization_method = "q4_k_m", token = "hf_...")

Loss for 5 epochs in the last training session of the last part of the dataset:
==((====))==  Unsloth - 2x faster free finetuning | Num GPUs = 1
   \\   /|    Num examples = 407 | Num Epochs = 5
O^O/ \_/ \    Batch size per device = 2 | Gradient Accumulation steps = 256
\        /    Total batch size = 512 | Total steps = 5
 "-____-"     Number of trainable parameters = 201,850,880
 [5/5 29:36, Epoch 3/5]
Step	Training Loss
1	0.568000
2	0.145300
3	0.506100
4	0.331900
5	0.276100

Quick test 1 after training the last part of the dataset:

# alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
    alpaca_prompt.format(
        "Continue the fibonnaci sequence.", # instruction
        "1, 1, 2, 3, 5, 8", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

AI Response: ['<s> Below is an instruction that describes a task. Write a response that appropriately completes the request.\n### Input:\nContinue the fibonnaci sequence.\n\n### Output:\n1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 420, 787, 1444, 2881, 4765, 8640']

Quick test 2 after training the last part of the dataset:

# alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
    alpaca_prompt.format(
        "Continue the fibonnaci sequence.", # instruction
        "1, 1, 2, 3, 5, 8", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)

AI Response: <s> Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Input:
Continue the fibonnaci sequence.

### Output:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 420, 787, 1444, 2881, 4765, 8640, 17281, 31362, 65325, 128672, 251345, 410000, 720000, 1280000,

Quick test 3 after training the last part of the dataset:

if False:
    from unsloth import FastLanguageModel
    model, tokenizer = FastLanguageModel.from_pretrained(
        model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING
        max_seq_length = max_seq_length,
        dtype = dtype,
        load_in_4bit = load_in_4bit,
    )
    FastLanguageModel.for_inference(model) # Enable native 2x faster inference

# alpaca_prompt = You MUST copy from above!

inputs = tokenizer(
[
    alpaca_prompt.format(
        "What is a famous tall tower in Paris?", # instruction
        "", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 64)

AI Response: <s> Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Input:
What is a famous tall tower in Paris?

### Output:
The famous tall tower in Paris is the Eiffel Tower. It is a 300-meter-tall steel tower located in the heart of Paris, France. The tower was built in 18892 and is a popular tourist attraction. It is also a symbol of the city

outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month
87
Safetensors
Model size
1.1B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Ramikan-BR/tinyllama-coder-py-4bit-v10

Adapter
(7)
this model

Dataset used to train Ramikan-BR/tinyllama-coder-py-4bit-v10

Spaces using Ramikan-BR/tinyllama-coder-py-4bit-v10 2