metadata
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: RewardModel_RobertaBase
results: []
RewardModel_RobertaBase
This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5009
- F1: 0.7738
- Roc Auc: 0.7738
- Accuracy: 0.7698
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
No log | 1.0 | 93 | 0.5440 | 0.7331 | 0.7341 | 0.7302 |
0.648 | 2.0 | 186 | 0.5009 | 0.7738 | 0.7738 | 0.7698 |
0.5515 | 3.0 | 279 | 0.4938 | 0.7545 | 0.7560 | 0.75 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1