RCorvalan/Llama-3.1-Tulu-3-8B-Q6_K-GGUF
This model was converted to GGUF format from allenai/Llama-3.1-Tulu-3-8B
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo RCorvalan/Llama-3.1-Tulu-3-8B-Q6_K-GGUF --hf-file llama-3.1-tulu-3-8b-q6_k.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo RCorvalan/Llama-3.1-Tulu-3-8B-Q6_K-GGUF --hf-file llama-3.1-tulu-3-8b-q6_k.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo RCorvalan/Llama-3.1-Tulu-3-8B-Q6_K-GGUF --hf-file llama-3.1-tulu-3-8b-q6_k.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo RCorvalan/Llama-3.1-Tulu-3-8B-Q6_K-GGUF --hf-file llama-3.1-tulu-3-8b-q6_k.gguf -c 2048
- Downloads last month
- 24
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for RCorvalan/Llama-3.1-Tulu-3-8B-Q6_K-GGUF
Base model
meta-llama/Llama-3.1-8B
Finetuned
allenai/Llama-3.1-Tulu-3-8B-SFT
Finetuned
allenai/Llama-3.1-Tulu-3-8B-DPO
Finetuned
allenai/Llama-3.1-Tulu-3-8B
Dataset used to train RCorvalan/Llama-3.1-Tulu-3-8B-Q6_K-GGUF
Evaluation results
- averaged accuracy on IFEval (0-Shot)Open LLM Leaderboard82.550
- normalized accuracy on BBH (3-Shot)test set Open LLM Leaderboard16.860
- exact match on MATH Lvl 5 (4-Shot)test set Open LLM Leaderboard18.880
- acc_norm on GPQA (0-shot)Open LLM Leaderboard6.260
- acc_norm on MuSR (0-shot)Open LLM Leaderboard10.520
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard20.230