Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: /root/cproject_updated/Qwen2.5-7B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

plugins:
  - axolotl.integrations.liger.LigerPlugin

liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: false

load_in_8bit: false
load_in_4bit: false
strict: false

auto_resume_from_checkpoints: true

datasets:
  - path: json
    data_files: /root/cproject_updated/judge_1k_axolotl.jsonl
    ds_type: json
    type: completion

shuffle_merged_datasets: true
dataset_prepared_path: /root/cproject_updated/prnew142
val_set_size: 0.05
output_dir: /root/cproject_updated/conv_200k_14b
sequence_len: 8192
sample_packing: true
eval_sample_packing: false

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine

learning_rate: 1e-5
adam_beta1: 0.99
adam_beta2: 0.99
max_grad_norm: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true

logging_steps: 1
flash_attention: true
warmup_steps: 10
eval_steps: 26
saves_per_epoch: 1

deepspeed: /sky_workdir/axolotl/deepspeed_configs/zero3_bf16.json

auto_resume_from_checkpoints: false
wandb_project: corruption_model_rm
wandb_entity:
wandb_watch:
wandb_name: rm-test-v1-7b-adammax2
wandb_log_model:

root/cproject_updated/conv_200k_14b

This model was trained from scratch on the json dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5430

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Use paged_adamw_8bit with betas=(0.99,0.99) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
0.7452 1.0 26 0.7888
0.6347 2.0 52 0.6729
0.6479 3.0 78 0.5560
0.3729 4.0 104 0.5430

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
12
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.