See axolotl config
axolotl version: 0.6.0
base_model: /root/cproject_updated/Qwen2.5-7B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: false
load_in_8bit: false
load_in_4bit: false
strict: false
auto_resume_from_checkpoints: true
datasets:
- path: json
data_files: /root/cproject_updated/judge_1k_axolotl.jsonl
ds_type: json
type: completion
shuffle_merged_datasets: true
dataset_prepared_path: /root/cproject_updated/prnew142
val_set_size: 0.05
output_dir: /root/cproject_updated/conv_200k_14b
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
adam_beta1: 0.99
adam_beta2: 0.99
max_grad_norm: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
eval_steps: 26
saves_per_epoch: 1
deepspeed: /sky_workdir/axolotl/deepspeed_configs/zero3_bf16.json
auto_resume_from_checkpoints: false
wandb_project: corruption_model_rm
wandb_entity:
wandb_watch:
wandb_name: rm-test-v1-7b-adammax2
wandb_log_model:
root/cproject_updated/conv_200k_14b
This model was trained from scratch on the json dataset. It achieves the following results on the evaluation set:
- Loss: 0.5430
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use paged_adamw_8bit with betas=(0.99,0.99) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7452 | 1.0 | 26 | 0.7888 |
0.6347 | 2.0 | 52 | 0.6729 |
0.6479 | 3.0 | 78 | 0.5560 |
0.3729 | 4.0 | 104 | 0.5430 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.