Edit model card

QuantFactory/leniachat-gemma-2b-v0-GGUF

This is quantized version of LenguajeNaturalAI/leniachat-gemma-2b-v0 created using llama.cpp

Original Model Card

image/png

Modelo LenguajeNatural.AI Chat e Instrucciones 2B

Desarrollado por

Este modelo ha sido desarrollado por LenguajeNatural.AI, con el objetivo de proporcionar a la comunidad de habla hispana herramientas avanzadas para la generación de texto, chat e instrucciones. Es el primero de una serie de modelos que planeamos lanzar.

Licencia

Este modelo se distribuye bajo la licencia Apache 2.0.

Modelo Base

Este modelo se ha afinado a partir de google/gemma-2b, incorporando características avanzadas para una mejor generación de texto y comprensión en tareas de chat e instrucciones en español.

Idioma

El modelo ha sido entrenado exclusivamente en español, con el objetivo de maximizar su efectividad en aplicaciones destinadas a usuarios de habla hispana.

Entrenamiento

El modelo se ha entrenado en tres fases distintas para asegurar un buen rendimiento en una amplia gama de tareas:

  1. Aprendizaje multi-tarea en español: Utilizando múltiples conjuntos de datos supervisados para un entrenamiento al estilo FLAN.
  2. Entrenamiento de instrucciones de alta calidad: Afinando el modelo para entender y generar respuestas a instrucciones complejas.
  3. Entrenamiento de chat y QA abstractivo: Optimizando el modelo para conversaciones fluidas y la generación de respuestas a preguntas abstractas.

En las 3 fases se ha llevado a cabo el entrenamiento gracias a nuestra librería autotransformers.

image/png

Tamaño máximo de secuencia

El tamaño máximo de secuencia para este modelo es de 8192 tokens.

Usos y Limitaciones

Este modelo está diseñado para ser utilizado en aplicaciones de generación de texto, chatbots, y asistentes virtuales en español. Aunque ha sido entrenado para minimizar sesgos y errores, recomendamos evaluar su desempeño en su contexto específico de uso. Los usuarios deben ser conscientes de las limitaciones inherentes a los modelos de lenguaje y utilizar este modelo de manera responsable. Además, debe tenerse en cuenta que el modelo base es de únicamente 2b parámetros, por lo que este modelo comparte las limitaciones inherentes a los modelos de ese tamaño.

¿Cómo empezar?

Puedes empezar a utilizar este modelo a través de la API de Hugging Face o integrarlo en tus aplicaciones utilizando la biblioteca transformers. Aquí tienes un ejemplo de cómo cargar el modelo:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "LenguajeNaturalAI/leniachat-gemma-2b-v0"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Generar texto
messages = [
  {"role": "system", "content": "Eres un asistente que ayuda al usuario a lo largo de la conversación resolviendo sus dudas."},
  {"role": "user", "content": "¿Qué fue la revolución industrial?"}
]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt")
with torch.no_grad():
  output = model.generate(input_ids, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))

Evaluación

Para asegurar la calidad del modelo, se ha realizado una evaluación exhaustiva en varios conjuntos de datos, mostrando un rendimiento significativo en la generación de texto y la comprensión de instrucciones en español. Los detalles específicos de la evaluación de los modelos LeNIA-Chat están disponibles en la siguiente tabla.

image/png

Contribuciones

Animamos a la comunidad a contribuir con retroalimentación, sugerencias, y mejoras para este modelo. La colaboración es fundamental para el avance de la inteligencia artificial accesible y ética.

Futuras Versiones

Planeamos continuar mejorando este modelo y lanzar versiones futuras con capacidades ampliadas. Mantente atento a nuestras actualizaciones. Puedes estar al tanto en nuestra página web o nuestra página de LinkedIn.

Downloads last month
369
GGUF
Model size
2.51B params
Architecture
gemma

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for QuantFactory/leniachat-gemma-2b-v0-GGUF

Base model

google/gemma-2b
Quantized
(31)
this model