QuantFactory/dolphin-2.9.4-llama3.1-8b-GGUF
This is quantized version of cognitivecomputations/dolphin-2.9.4-llama3.1-8b created using llama.cpp
Original Model Card
warning - it's not working yet, recommend hold off on downloading
Evals
hf (pretrained=/workspace/axolotl/dolphin-2.9.4-llama3.1-8b-hf,dtype=bfloat16), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: auto (4)
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
|-----------------------------------------------------------|-------|------|-----:|-----------------------|---|-----:|---|------|
|leaderboard |N/A |none | 0|acc |↑ |0.2926|± |0.0041|
| | |none | 0|acc_norm |↑ |0.4513|± |0.0053|
| | |none | 0|exact_match |↑ |0.0982|± |0.0079|
| | |none | 0|inst_level_loose_acc |↑ |0.3825|± |N/A |
| | |none | 0|inst_level_strict_acc |↑ |0.3597|± |N/A |
| | |none | 0|prompt_level_loose_acc |↑ |0.2421|± |0.0184|
| | |none | 0|prompt_level_strict_acc|↑ |0.2181|± |0.0178|
| - leaderboard_bbh |N/A |none | 3|acc_norm |↑ |0.4931|± |0.0061|
| - leaderboard_bbh_boolean_expressions | 0|none | 3|acc_norm |↑ |0.8000|± |0.0253|
| - leaderboard_bbh_causal_judgement | 0|none | 3|acc_norm |↑ |0.5615|± |0.0364|
| - leaderboard_bbh_date_understanding | 0|none | 3|acc_norm |↑ |0.4520|± |0.0315|
| - leaderboard_bbh_disambiguation_qa | 0|none | 3|acc_norm |↑ |0.6640|± |0.0299|
| - leaderboard_bbh_formal_fallacies | 0|none | 3|acc_norm |↑ |0.5600|± |0.0315|
| - leaderboard_bbh_geometric_shapes | 0|none | 3|acc_norm |↑ |0.3640|± |0.0305|
| - leaderboard_bbh_hyperbaton | 0|none | 3|acc_norm |↑ |0.6320|± |0.0306|
| - leaderboard_bbh_logical_deduction_five_objects | 0|none | 3|acc_norm |↑ |0.4600|± |0.0316|
| - leaderboard_bbh_logical_deduction_seven_objects | 0|none | 3|acc_norm |↑ |0.4360|± |0.0314|
| - leaderboard_bbh_logical_deduction_three_objects | 0|none | 3|acc_norm |↑ |0.6160|± |0.0308|
| - leaderboard_bbh_movie_recommendation | 0|none | 3|acc_norm |↑ |0.7880|± |0.0259|
| - leaderboard_bbh_navigate | 0|none | 3|acc_norm |↑ |0.5200|± |0.0317|
| - leaderboard_bbh_object_counting | 0|none | 3|acc_norm |↑ |0.4520|± |0.0315|
| - leaderboard_bbh_penguins_in_a_table | 0|none | 3|acc_norm |↑ |0.5205|± |0.0415|
| - leaderboard_bbh_reasoning_about_colored_objects | 0|none | 3|acc_norm |↑ |0.5120|± |0.0317|
| - leaderboard_bbh_ruin_names | 0|none | 3|acc_norm |↑ |0.6320|± |0.0306|
| - leaderboard_bbh_salient_translation_error_detection | 0|none | 3|acc_norm |↑ |0.4320|± |0.0314|
| - leaderboard_bbh_snarks | 0|none | 3|acc_norm |↑ |0.5843|± |0.0370|
| - leaderboard_bbh_sports_understanding | 0|none | 3|acc_norm |↑ |0.7040|± |0.0289|
| - leaderboard_bbh_temporal_sequences | 0|none | 3|acc_norm |↑ |0.1440|± |0.0222|
| - leaderboard_bbh_tracking_shuffled_objects_five_objects | 0|none | 3|acc_norm |↑ |0.1560|± |0.0230|
| - leaderboard_bbh_tracking_shuffled_objects_seven_objects| 0|none | 3|acc_norm |↑ |0.1320|± |0.0215|
| - leaderboard_bbh_tracking_shuffled_objects_three_objects| 0|none | 3|acc_norm |↑ |0.2840|± |0.0286|
| - leaderboard_bbh_web_of_lies | 0|none | 3|acc_norm |↑ |0.4840|± |0.0317|
| - leaderboard_gpqa |N/A |none | 0|acc_norm |↑ |0.2903|± |0.0132|
| - leaderboard_gpqa_diamond | 1|none | 0|acc_norm |↑ |0.2980|± |0.0326|
| - leaderboard_gpqa_extended | 1|none | 0|acc_norm |↑ |0.2839|± |0.0193|
| - leaderboard_gpqa_main | 1|none | 0|acc_norm |↑ |0.2946|± |0.0216|
| - leaderboard_ifeval | 2|none | 0|inst_level_loose_acc |↑ |0.3825|± |N/A |
| | |none | 0|inst_level_strict_acc |↑ |0.3597|± |N/A |
| | |none | 0|prompt_level_loose_acc |↑ |0.2421|± |0.0184|
| | |none | 0|prompt_level_strict_acc|↑ |0.2181|± |0.0178|
| - leaderboard_math_algebra_hard | 1|none | 4|exact_match |↑ |0.1596|± |0.0209|
| - leaderboard_math_counting_and_prob_hard | 1|none | 4|exact_match |↑ |0.0488|± |0.0195|
| - leaderboard_math_geometry_hard | 1|none | 4|exact_match |↑ |0.0530|± |0.0196|
| - leaderboard_math_hard |N/A |none | 4|exact_match |↑ |0.0982|± |0.0079|
| - leaderboard_math_intermediate_algebra_hard | 1|none | 4|exact_match |↑ |0.0143|± |0.0071|
| - leaderboard_math_num_theory_hard | 1|none | 4|exact_match |↑ |0.0455|± |0.0168|
| - leaderboard_math_prealgebra_hard | 1|none | 4|exact_match |↑ |0.2591|± |0.0316|
| - leaderboard_math_precalculus_hard | 1|none | 4|exact_match |↑ |0.0519|± |0.0192|
| - leaderboard_mmlu_pro | 0.1|none | 5|acc |↑ |0.2926|± |0.0041|
| - leaderboard_musr |N/A |none | 0|acc_norm |↑ |0.3862|± |0.0173|
| - leaderboard_musr_murder_mysteries | 1|none | 0|acc_norm |↑ |0.5280|± |0.0316|
| - leaderboard_musr_object_placements | 1|none | 0|acc_norm |↑ |0.3594|± |0.0300|
| - leaderboard_musr_team_allocation | 1|none | 0|acc_norm |↑ |0.2720|± |0.0282|
| Groups |Version|Filter|n-shot| Metric | |Value | |Stderr|
|------------------------|-------|------|-----:|-----------------------|---|-----:|---|------|
|leaderboard |N/A |none | 0|acc |↑ |0.2926|± |0.0041|
| | |none | 0|acc_norm |↑ |0.4513|± |0.0053|
| | |none | 0|exact_match |↑ |0.0982|± |0.0079|
| | |none | 0|inst_level_loose_acc |↑ |0.3825|± |N/A |
| | |none | 0|inst_level_strict_acc |↑ |0.3597|± |N/A |
| | |none | 0|prompt_level_loose_acc |↑ |0.2421|± |0.0184|
| | |none | 0|prompt_level_strict_acc|↑ |0.2181|± |0.0178|
| - leaderboard_bbh |N/A |none | 3|acc_norm |↑ |0.4931|± |0.0061|
| - leaderboard_gpqa |N/A |none | 0|acc_norm |↑ |0.2903|± |0.0132|
| - leaderboard_math_hard|N/A |none | 4|exact_match |↑ |0.0982|± |0.0079|
| - leaderboard_musr |N/A |none | 0|acc_norm |↑ |0.3862|± |0.0173|
See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3.1-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
# load_in_4bit: true
strict: false
datasets:
- path: /workspace/datasets/dolphin-2.9.4/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
chat_template: chatml
# adapter: qlora
# lora_r: 128
# lora_alpha: 16
# lora_modules_to_save: [embed_tokens, lm_head]
# lora_dropout: 0.05
# lora_target_linear: true
unfrozen_parameters:
- input_layernorm
- model.norm
- post_attention_layernorm
- self_attn.rotary_emb
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# mlp.down_proj layers
- model.layers.1.mlp.down_proj
- model.layers.0.mlp.down_proj
- model.layers.30.mlp.down_proj
- model.layers.2.mlp.down_proj
- model.layers.21.mlp.down_proj
- model.layers.22.mlp.down_proj
- model.layers.29.mlp.down_proj
- model.layers.5.mlp.down_proj
- model.layers.4.mlp.down_proj
- model.layers.20.mlp.down_proj
- model.layers.23.mlp.down_proj
- model.layers.19.mlp.down_proj
- model.layers.3.mlp.down_proj
- model.layers.17.mlp.down_proj
- model.layers.6.mlp.down_proj
- model.layers.31.mlp.down_proj
# mlp.up_proj layers
- model.layers.4.mlp.up_proj
- model.layers.3.mlp.up_proj
- model.layers.0.mlp.up_proj
- model.layers.5.mlp.up_proj
- model.layers.7.mlp.up_proj
- model.layers.6.mlp.up_proj
- model.layers.2.mlp.up_proj
- model.layers.1.mlp.up_proj
- model.layers.8.mlp.up_proj
- model.layers.12.mlp.up_proj
- model.layers.14.mlp.up_proj
- model.layers.9.mlp.up_proj
- model.layers.15.mlp.up_proj
- model.layers.17.mlp.up_proj
- model.layers.13.mlp.up_proj
- model.layers.19.mlp.up_proj
# self_attn.k_proj layers
- model.layers.29.self_attn.k_proj
- model.layers.25.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.28.self_attn.k_proj
- model.layers.21.self_attn.k_proj
- model.layers.19.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.20.self_attn.k_proj
- model.layers.24.self_attn.k_proj
- model.layers.31.self_attn.k_proj
- model.layers.27.self_attn.k_proj
- model.layers.26.self_attn.k_proj
- model.layers.17.self_attn.k_proj
- model.layers.11.self_attn.k_proj
- model.layers.18.self_attn.k_proj
- model.layers.14.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.14.self_attn.o_proj
- model.layers.7.self_attn.o_proj
- model.layers.5.self_attn.o_proj
- model.layers.11.self_attn.o_proj
- model.layers.6.self_attn.o_proj
- model.layers.24.self_attn.o_proj
- model.layers.9.self_attn.o_proj
- model.layers.13.self_attn.o_proj
- model.layers.10.self_attn.o_proj
- model.layers.12.self_attn.o_proj
- model.layers.8.self_attn.o_proj
- model.layers.25.self_attn.o_proj
- model.layers.21.self_attn.o_proj
- model.layers.23.self_attn.o_proj
- model.layers.15.self_attn.o_proj
- model.layers.16.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.8.self_attn.q_proj
- model.layers.13.self_attn.q_proj
- model.layers.9.self_attn.q_proj
- model.layers.14.self_attn.q_proj
- model.layers.10.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.0.self_attn.q_proj
- model.layers.15.self_attn.q_proj
- model.layers.1.self_attn.q_proj
- model.layers.6.self_attn.q_proj
- model.layers.5.self_attn.q_proj
- model.layers.7.self_attn.q_proj
- model.layers.12.self_attn.q_proj
- model.layers.16.self_attn.q_proj
- model.layers.17.self_attn.q_proj
- model.layers.26.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.26.self_attn.v_proj
- model.layers.17.self_attn.v_proj
- model.layers.3.self_attn.v_proj
- model.layers.28.self_attn.v_proj
- model.layers.29.self_attn.v_proj
- model.layers.21.self_attn.v_proj
- model.layers.15.self_attn.v_proj
- model.layers.16.self_attn.v_proj
- model.layers.20.self_attn.v_proj
- model.layers.25.self_attn.v_proj
- model.layers.6.self_attn.v_proj
- model.layers.23.self_attn.v_proj
- model.layers.4.self_attn.v_proj
- model.layers.1.self_attn.v_proj
- model.layers.22.self_attn.v_proj
- model.layers.14.self_attn.v_proj
# mlp.gate_proj layers
- model.layers.1.mlp.gate_proj
- model.layers.2.mlp.gate_proj
- model.layers.3.mlp.gate_proj
- model.layers.4.mlp.gate_proj
- model.layers.0.mlp.gate_proj
- model.layers.25.mlp.gate_proj
- model.layers.26.mlp.gate_proj
- model.layers.5.mlp.gate_proj
- model.layers.24.mlp.gate_proj
- model.layers.28.mlp.gate_proj
- model.layers.23.mlp.gate_proj
- model.layers.27.mlp.gate_proj
- model.layers.21.mlp.gate_proj
- model.layers.22.mlp.gate_proj
- model.layers.29.mlp.gate_proj
- model.layers.20.mlp.gate_proj
dataset_prepared_path: /workspace/axolotl/dolph-2.9.4-nemo-prepared
val_set_size: 0.01
output_dir: /workspace/axolotl/dolphin-2.9.4-llama3.1-8b
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: dolphin-2.9.4-llama3.1-8b
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32:
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
# evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
save_total_limit: 2
save_steps:
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
special_tokens:
eos_token: "<|im_end|>"
bos_token: "<|begin_of_text|>"
pad_token: "<|finetune_right_pad_id|>"
tokens:
- "<|im_start|>"
# fsdp:
# - full_shard
# - auto_wrap
# fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: true
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: true
# fsdp_transformer_layer_cls_to_wrap: MixtralSparseMoeBlock
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_sharding_strategy: FULL_SHARD
# fsdp_forward_prefetch: false
# fsdp_backward_prefetch: BACKWARD_PRE
workspace/axolotl/dolphin-2.9.4-llama3.1-8b
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5655
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5837 | 1.0180 | 1161 | 0.5814 |
0.5525 | 2.0179 | 2322 | 0.5671 |
0.5514 | 2.9624 | 3420 | 0.5655 |
Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 265
Model tree for QuantFactory/dolphin-2.9.4-llama3.1-8b-GGUF
Base model
meta-llama/Llama-3.1-8B