QuantFactory Banner

QuantFactory/HTML-Pruner-Llama-1B-GGUF

This is quantized version of zstanjj/HTML-Pruner-Llama-1B created using llama.cpp

Original Model Card

✨ Latest News

  • [11/06/2024]: Our paper is available on arXiv. You can access it here.
  • [11/05/2024]: The open-source toolkit and models are released. You can apply HtmlRAG in your own RAG systems now.

Model Information

β€’ πŸ“ Paper β€’ πŸ€— Hugging Face β€’ 🧩 Github

We propose HtmlRAG, which uses HTML instead of plain text as the format of external knowledge in RAG systems. To tackle the long context brought by HTML, we propose Lossless HTML Cleaning and Two-Step Block-Tree-Based HTML Pruning.

  • Lossless HTML Cleaning: This cleaning process just removes totally irrelevant contents and compress redundant structures, retaining all semantic information in the original HTML. The compressed HTML of lossless HTML cleaning is suitable for RAG systems that have long-context LLMs and are not willing to loss any information before generation.

  • Two-Step Block-Tree-Based HTML Pruning: The block-tree-based HTML pruning consists of two steps, both of which are conducted on the block tree structure. The first pruning step uses a embedding model to calculate scores for blocks, while the second step uses a path generative model. The first step processes the result of lossless HTML cleaning, while the second step processes the result of the first pruning step.

🌹 If you use this model, please star our GitHub repository to support us. Your star means a lot!

πŸ“¦ Installation

Install the package using pip:

pip install htmlrag

Or install the package from source:

pip install -e .

πŸ“– User Guide

🧹 HTML Cleaning

from htmlrag import clean_html

question = "When was the bellagio in las vegas built?"
html = """
<html>
<head>
<title>When was the bellagio in las vegas built?</title>
</head>
<body>
<p class="class0">The Bellagio is a luxury hotel and casino located on the Las Vegas Strip in Paradise, Nevada. It was built in 1998.</p>
</body>
<div>
<div>
<p>Some other text</p>
<p>Some other text</p>
</div>
</div>
<p class="class1"></p>
<!-- Some comment -->
<script type="text/javascript">
document.write("Hello World!");
</script>
</html>
"""

simplified_html = clean_html(html)
print(simplified_html)

# <html>
# <title>When was the bellagio in las vegas built?</title>
# <p>The Bellagio is a luxury hotel and casino located on the Las Vegas Strip in Paradise, Nevada. It was built in 1998.</p>
# <div>
# <p>Some other text</p>
# <p>Some other text</p>
# </div>
# </html>

🌲 Build Block Tree

from htmlrag import build_block_tree

block_tree, simplified_html = build_block_tree(simplified_html, max_node_words=10)
for block in block_tree:
    print("Block Content: ", block[0])
    print("Block Path: ", block[1])
    print("Is Leaf: ", block[2])
    print("")

# Block Content:  <title>When was the bellagio in las vegas built?</title>
# Block Path:  ['html', 'title']
# Is Leaf:  True
# 
# Block Content:  <div>
# <p>Some other text</p>
# <p>Some other text</p>
# </div>
# Block Path:  ['html', 'div']
# Is Leaf:  True
# 
# Block Content:  <p>The Bellagio is a luxury hotel and casino located on the Las Vegas Strip in Paradise, Nevada. It was built in 1998.</p>
# Block Path:  ['html', 'p']
# Is Leaf:  True

βœ‚οΈ Prune HTML Blocks with Embedding Model

from htmlrag import EmbedHTMLPruner

embed_html_pruner = EmbedHTMLPruner(embed_model="bm25")
block_rankings = embed_html_pruner.calculate_block_rankings(question, simplified_html, block_tree)
print(block_rankings)

# [0, 2, 1]

from transformers import AutoTokenizer

chat_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-70B-Instruct")

max_context_window = 60
pruned_html = embed_html_pruner.prune_HTML(simplified_html, block_tree, block_rankings, chat_tokenizer, max_context_window)
print(pruned_html)

# <html>
# <title>When was the bellagio in las vegas built?</title>
# <p>The Bellagio is a luxury hotel and casino located on the Las Vegas Strip in Paradise, Nevada. It was built in 1998.</p>
# </html>

βœ‚οΈ Prune HTML Blocks with Generative Model

from htmlrag import GenHTMLPruner

ckpt_path = "zstanjj/HTML-Pruner-Llama-1B"
gen_embed_pruner = GenHTMLPruner(gen_model=ckpt_path, max_node_words=10)
block_rankings = gen_embed_pruner.calculate_block_rankings(question, pruned_html)
print(block_rankings)

# [1, 0]

max_context_window = 32
pruned_html = gen_embed_pruner.prune_HTML(pruned_html, block_tree, block_rankings, chat_tokenizer, max_context_window)
print(pruned_html)

# <p>The Bellagio is a luxury hotel and casino located on the Las Vegas Strip in Paradise, Nevada. It was built in 1998.</p>

Results

Dataset ASQA HotpotQA NQ TriviaQA MuSiQue ELI5
Metrics EM EM EM EM EM ROUGE-L
BM25 49.50 38.25 47.00 88.00 9.50 16.15
BGE 68.00 41.75 59.50 93.00 12.50 16.20
E5-Mistral 63.00 36.75 59.50 90.75 11.00 16.17
LongLLMLingua 62.50 45.00 56.75 92.50 10.25 15.84
JinaAI Reader 55.25 34.25 48.25 90.00 9.25 16.06
HtmlRAG-Phi-3.8B 68.50 46.25 60.50 93.50 13.25 16.33
HtmlRAG-Llama-1B 66.50 45.00 60.75 93.00 10.00 16.25

πŸ“œ Citation

@misc{tan2024htmlraghtmlbetterplain,
      title={HtmlRAG: HTML is Better Than Plain Text for Modeling Retrieved Knowledge in RAG Systems}, 
      author={Jiejun Tan and Zhicheng Dou and Wen Wang and Mang Wang and Weipeng Chen and Ji-Rong Wen},
      year={2024},
      eprint={2411.02959},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2411.02959}, 
}
Downloads last month
653
GGUF
Model size
1.24B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for QuantFactory/HTML-Pruner-Llama-1B-GGUF

Quantized
(83)
this model