Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: NousResearch/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: QTeam/htxllama_1
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/llama3-8b-ht-v1-2

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project: "ft-llama3-8b-v1"
wandb_entity: "htxqteam1-htx"
wandb_watch: "all"
wandb_name: 
wandb_log_model: "never"

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
   pad_token: <|end_of_text|>

outputs/llama3-8b-ht-v1-2

This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5036

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • total_train_batch_size: 6
  • total_eval_batch_size: 6
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
2.1533 0.0161 1 2.1831
1.6416 0.2581 16 1.7333
1.6154 0.5161 32 1.6458
1.5155 0.7742 48 1.5807
1.5359 1.0323 64 1.5371
1.0746 1.2581 80 1.5888
1.0806 1.5161 96 1.5696
1.0348 1.7742 112 1.5536
1.0769 2.0323 128 1.5341
0.6608 2.2581 144 1.6201
0.6918 2.5161 160 1.6185
0.7203 2.7742 176 1.6154
0.7172 3.0323 192 1.6202
0.3914 3.2581 208 1.7162
0.4111 3.5161 224 1.7114
0.4091 3.7742 240 1.7177
0.4103 4.0323 256 1.7191
0.1996 4.2581 272 1.8387
0.1932 4.5161 288 1.8439
0.2185 4.7742 304 1.8510
0.2221 5.0323 320 1.8515
0.0968 5.2581 336 2.0317
0.0937 5.5161 352 2.0138
0.0973 5.7742 368 2.0274
0.083 6.0323 384 2.0257
0.0385 6.2581 400 2.1731
0.0411 6.5161 416 2.2114
0.0446 6.7742 432 2.2080
0.0426 7.0323 448 2.2194
0.0186 7.2581 464 2.4007
0.0186 7.5161 480 2.3837
0.0217 7.7742 496 2.3915
0.0201 8.0323 512 2.3953
0.0137 8.2581 528 2.4732
0.0158 8.5161 544 2.4896
0.0145 8.7742 560 2.4928
0.0145 9.0323 576 2.4964
0.0135 9.2581 592 2.5030
0.0149 9.5161 608 2.5036

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Qteam1/llama3-8b-ht-v1-2

Adapter
(18)
this model