pegasus-samsum

This model is a fine-tuned version of google/pegasus-cnn_dailymail on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3577

Model description

Check out this notebook for the details of model training

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training loss and epoch

Training Loss Epoch Step Validation Loss
1.6489 0.54 500 1.4894
1.578 1.09 1000 1.4044
1.3577 1.63 1500 1.3774
1.4376 2.17 2000 1.3639
1.3881 2.72 2500 1.3577

ROUGE Score

rouge1 rouge2 rougeL rougeLsum
pegasus 0.437429 0.20874 0.346974 0.34701

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
90
Safetensors
Model size
571M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for QingyunWang/pegasus-samsum

Finetuned
(177)
this model