polish_wikipedia_model
This model is a fine-tuned version of EleutherAI/pythia-70m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0137
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 300
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 1.0 | 9 | 1.1594 |
No log | 2.0 | 18 | 1.1355 |
No log | 3.0 | 27 | 1.0811 |
No log | 4.0 | 36 | 1.0362 |
No log | 5.0 | 45 | 1.0053 |
No log | 6.0 | 54 | 0.9728 |
No log | 7.0 | 63 | 0.9478 |
No log | 8.0 | 72 | 0.9089 |
No log | 9.0 | 81 | 0.8784 |
No log | 10.0 | 90 | 0.8576 |
No log | 11.0 | 99 | 0.8391 |
No log | 12.0 | 108 | 0.8121 |
No log | 13.0 | 117 | 0.7778 |
No log | 14.0 | 126 | 0.7642 |
No log | 15.0 | 135 | 0.7411 |
No log | 16.0 | 144 | 0.7252 |
No log | 17.0 | 153 | 0.7541 |
No log | 18.0 | 162 | 0.6939 |
No log | 19.0 | 171 | 0.6616 |
No log | 20.0 | 180 | 0.6834 |
No log | 21.0 | 189 | 0.6032 |
No log | 22.0 | 198 | 0.5909 |
No log | 23.0 | 207 | 0.5899 |
No log | 24.0 | 216 | 0.5610 |
No log | 25.0 | 225 | 0.5404 |
No log | 26.0 | 234 | 0.5576 |
No log | 27.0 | 243 | 0.5253 |
No log | 28.0 | 252 | 0.5085 |
No log | 29.0 | 261 | 0.5035 |
No log | 30.0 | 270 | 0.5017 |
No log | 31.0 | 279 | 0.4817 |
No log | 32.0 | 288 | 0.4690 |
No log | 33.0 | 297 | 0.4569 |
No log | 34.0 | 306 | 0.4611 |
No log | 35.0 | 315 | 0.4389 |
No log | 36.0 | 324 | 0.4598 |
No log | 37.0 | 333 | 0.4308 |
No log | 38.0 | 342 | 0.4101 |
No log | 39.0 | 351 | 0.4056 |
No log | 40.0 | 360 | 0.3939 |
No log | 41.0 | 369 | 0.3801 |
No log | 42.0 | 378 | 0.3741 |
No log | 43.0 | 387 | 0.3739 |
No log | 44.0 | 396 | 0.3779 |
No log | 45.0 | 405 | 0.3633 |
No log | 46.0 | 414 | 0.3614 |
No log | 47.0 | 423 | 0.3497 |
No log | 48.0 | 432 | 0.3508 |
No log | 49.0 | 441 | 0.3425 |
No log | 50.0 | 450 | 0.3399 |
No log | 51.0 | 459 | 0.3357 |
No log | 52.0 | 468 | 0.3393 |
No log | 53.0 | 477 | 0.3241 |
No log | 54.0 | 486 | 0.3427 |
No log | 55.0 | 495 | 0.3452 |
0.614 | 56.0 | 504 | 0.3283 |
0.614 | 57.0 | 513 | 0.3182 |
0.614 | 58.0 | 522 | 0.3192 |
0.614 | 59.0 | 531 | 0.3118 |
0.614 | 60.0 | 540 | 0.3055 |
0.614 | 61.0 | 549 | 0.3109 |
0.614 | 62.0 | 558 | 0.2976 |
0.614 | 63.0 | 567 | 0.3052 |
0.614 | 64.0 | 576 | 0.2988 |
0.614 | 65.0 | 585 | 0.3035 |
0.614 | 66.0 | 594 | 0.2874 |
0.614 | 67.0 | 603 | 0.2812 |
0.614 | 68.0 | 612 | 0.2828 |
0.614 | 69.0 | 621 | 0.2786 |
0.614 | 70.0 | 630 | 0.2775 |
0.614 | 71.0 | 639 | 0.2828 |
0.614 | 72.0 | 648 | 0.2710 |
0.614 | 73.0 | 657 | 0.2725 |
0.614 | 74.0 | 666 | 0.2930 |
0.614 | 75.0 | 675 | 0.2642 |
0.614 | 76.0 | 684 | 0.2661 |
0.614 | 77.0 | 693 | 0.2493 |
0.614 | 78.0 | 702 | 0.2494 |
0.614 | 79.0 | 711 | 0.2370 |
0.614 | 80.0 | 720 | 0.2497 |
0.614 | 81.0 | 729 | 0.2399 |
0.614 | 82.0 | 738 | 0.2340 |
0.614 | 83.0 | 747 | 0.2248 |
0.614 | 84.0 | 756 | 0.2234 |
0.614 | 85.0 | 765 | 0.2284 |
0.614 | 86.0 | 774 | 0.2099 |
0.614 | 87.0 | 783 | 0.2081 |
0.614 | 88.0 | 792 | 0.1958 |
0.614 | 89.0 | 801 | 0.1969 |
0.614 | 90.0 | 810 | 0.1843 |
0.614 | 91.0 | 819 | 0.1746 |
0.614 | 92.0 | 828 | 0.1718 |
0.614 | 93.0 | 837 | 0.1665 |
0.614 | 94.0 | 846 | 0.1597 |
0.614 | 95.0 | 855 | 0.1633 |
0.614 | 96.0 | 864 | 0.1490 |
0.614 | 97.0 | 873 | 0.1414 |
0.614 | 98.0 | 882 | 0.1344 |
0.614 | 99.0 | 891 | 0.1446 |
0.614 | 100.0 | 900 | 0.1426 |
0.614 | 101.0 | 909 | 0.1364 |
0.614 | 102.0 | 918 | 0.1310 |
0.614 | 103.0 | 927 | 0.1342 |
0.614 | 104.0 | 936 | 0.1312 |
0.614 | 105.0 | 945 | 0.1178 |
0.614 | 106.0 | 954 | 0.1040 |
0.614 | 107.0 | 963 | 0.0998 |
0.614 | 108.0 | 972 | 0.1120 |
0.614 | 109.0 | 981 | 0.1798 |
0.614 | 110.0 | 990 | 0.1072 |
0.614 | 111.0 | 999 | 0.0864 |
0.2254 | 112.0 | 1008 | 0.0876 |
0.2254 | 113.0 | 1017 | 0.0805 |
0.2254 | 114.0 | 1026 | 0.0684 |
0.2254 | 115.0 | 1035 | 0.0826 |
0.2254 | 116.0 | 1044 | 0.0772 |
0.2254 | 117.0 | 1053 | 0.0667 |
0.2254 | 118.0 | 1062 | 0.0616 |
0.2254 | 119.0 | 1071 | 0.0641 |
0.2254 | 120.0 | 1080 | 0.0528 |
0.2254 | 121.0 | 1089 | 0.0520 |
0.2254 | 122.0 | 1098 | 0.0454 |
0.2254 | 123.0 | 1107 | 0.0407 |
0.2254 | 124.0 | 1116 | 0.0440 |
0.2254 | 125.0 | 1125 | 0.0449 |
0.2254 | 126.0 | 1134 | 0.0423 |
0.2254 | 127.0 | 1143 | 0.0503 |
0.2254 | 128.0 | 1152 | 0.0380 |
0.2254 | 129.0 | 1161 | 0.0440 |
0.2254 | 130.0 | 1170 | 0.0435 |
0.2254 | 131.0 | 1179 | 0.0718 |
0.2254 | 132.0 | 1188 | 0.0483 |
0.2254 | 133.0 | 1197 | 0.0474 |
0.2254 | 134.0 | 1206 | 0.0424 |
0.2254 | 135.0 | 1215 | 0.0387 |
0.2254 | 136.0 | 1224 | 0.0357 |
0.2254 | 137.0 | 1233 | 0.0354 |
0.2254 | 138.0 | 1242 | 0.0340 |
0.2254 | 139.0 | 1251 | 0.0364 |
0.2254 | 140.0 | 1260 | 0.0375 |
0.2254 | 141.0 | 1269 | 0.0345 |
0.2254 | 142.0 | 1278 | 0.0434 |
0.2254 | 143.0 | 1287 | 0.0310 |
0.2254 | 144.0 | 1296 | 0.0291 |
0.2254 | 145.0 | 1305 | 0.0272 |
0.2254 | 146.0 | 1314 | 0.0250 |
0.2254 | 147.0 | 1323 | 0.0262 |
0.2254 | 148.0 | 1332 | 0.0244 |
0.2254 | 149.0 | 1341 | 0.0275 |
0.2254 | 150.0 | 1350 | 0.0273 |
0.2254 | 151.0 | 1359 | 0.0294 |
0.2254 | 152.0 | 1368 | 0.0305 |
0.2254 | 153.0 | 1377 | 0.0301 |
0.2254 | 154.0 | 1386 | 0.0277 |
0.2254 | 155.0 | 1395 | 0.0335 |
0.2254 | 156.0 | 1404 | 0.0430 |
0.2254 | 157.0 | 1413 | 0.0217 |
0.2254 | 158.0 | 1422 | 0.0244 |
0.2254 | 159.0 | 1431 | 0.0260 |
0.2254 | 160.0 | 1440 | 0.0249 |
0.2254 | 161.0 | 1449 | 0.0224 |
0.2254 | 162.0 | 1458 | 0.0237 |
0.2254 | 163.0 | 1467 | 0.0228 |
0.2254 | 164.0 | 1476 | 0.0198 |
0.2254 | 165.0 | 1485 | 0.0315 |
0.2254 | 166.0 | 1494 | 0.0283 |
0.046 | 167.0 | 1503 | 0.0245 |
0.046 | 168.0 | 1512 | 0.0201 |
0.046 | 169.0 | 1521 | 0.0272 |
0.046 | 170.0 | 1530 | 0.0191 |
0.046 | 171.0 | 1539 | 0.0281 |
0.046 | 172.0 | 1548 | 0.0236 |
0.046 | 173.0 | 1557 | 0.0207 |
0.046 | 174.0 | 1566 | 0.0183 |
0.046 | 175.0 | 1575 | 0.0285 |
0.046 | 176.0 | 1584 | 0.0232 |
0.046 | 177.0 | 1593 | 0.0185 |
0.046 | 178.0 | 1602 | 0.0193 |
0.046 | 179.0 | 1611 | 0.0188 |
0.046 | 180.0 | 1620 | 0.0189 |
0.046 | 181.0 | 1629 | 0.0224 |
0.046 | 182.0 | 1638 | 0.0228 |
0.046 | 183.0 | 1647 | 0.0239 |
0.046 | 184.0 | 1656 | 0.0219 |
0.046 | 185.0 | 1665 | 0.0175 |
0.046 | 186.0 | 1674 | 0.0216 |
0.046 | 187.0 | 1683 | 0.0225 |
0.046 | 188.0 | 1692 | 0.0193 |
0.046 | 189.0 | 1701 | 0.0171 |
0.046 | 190.0 | 1710 | 0.0184 |
0.046 | 191.0 | 1719 | 0.0184 |
0.046 | 192.0 | 1728 | 0.0174 |
0.046 | 193.0 | 1737 | 0.0178 |
0.046 | 194.0 | 1746 | 0.0184 |
0.046 | 195.0 | 1755 | 0.0191 |
0.046 | 196.0 | 1764 | 0.0256 |
0.046 | 197.0 | 1773 | 0.0183 |
0.046 | 198.0 | 1782 | 0.0178 |
0.046 | 199.0 | 1791 | 0.0181 |
0.046 | 200.0 | 1800 | 0.0203 |
0.046 | 201.0 | 1809 | 0.0196 |
0.046 | 202.0 | 1818 | 0.0181 |
0.046 | 203.0 | 1827 | 0.0197 |
0.046 | 204.0 | 1836 | 0.0183 |
0.046 | 205.0 | 1845 | 0.0174 |
0.046 | 206.0 | 1854 | 0.0154 |
0.046 | 207.0 | 1863 | 0.0169 |
0.046 | 208.0 | 1872 | 0.0166 |
0.046 | 209.0 | 1881 | 0.0220 |
0.046 | 210.0 | 1890 | 0.0204 |
0.046 | 211.0 | 1899 | 0.0189 |
0.046 | 212.0 | 1908 | 0.0167 |
0.046 | 213.0 | 1917 | 0.0183 |
0.046 | 214.0 | 1926 | 0.0173 |
0.046 | 215.0 | 1935 | 0.0163 |
0.046 | 216.0 | 1944 | 0.0164 |
0.046 | 217.0 | 1953 | 0.0182 |
0.046 | 218.0 | 1962 | 0.0177 |
0.046 | 219.0 | 1971 | 0.0164 |
0.046 | 220.0 | 1980 | 0.0171 |
0.046 | 221.0 | 1989 | 0.0163 |
0.046 | 222.0 | 1998 | 0.0184 |
0.0226 | 223.0 | 2007 | 0.0180 |
0.0226 | 224.0 | 2016 | 0.0198 |
0.0226 | 225.0 | 2025 | 0.0181 |
0.0226 | 226.0 | 2034 | 0.0164 |
0.0226 | 227.0 | 2043 | 0.0157 |
0.0226 | 228.0 | 2052 | 0.0159 |
0.0226 | 229.0 | 2061 | 0.0156 |
0.0226 | 230.0 | 2070 | 0.0166 |
0.0226 | 231.0 | 2079 | 0.0154 |
0.0226 | 232.0 | 2088 | 0.0174 |
0.0226 | 233.0 | 2097 | 0.0157 |
0.0226 | 234.0 | 2106 | 0.0162 |
0.0226 | 235.0 | 2115 | 0.0162 |
0.0226 | 236.0 | 2124 | 0.0162 |
0.0226 | 237.0 | 2133 | 0.0222 |
0.0226 | 238.0 | 2142 | 0.0189 |
0.0226 | 239.0 | 2151 | 0.0182 |
0.0226 | 240.0 | 2160 | 0.0151 |
0.0226 | 241.0 | 2169 | 0.0152 |
0.0226 | 242.0 | 2178 | 0.0152 |
0.0226 | 243.0 | 2187 | 0.0154 |
0.0226 | 244.0 | 2196 | 0.0146 |
0.0226 | 245.0 | 2205 | 0.0145 |
0.0226 | 246.0 | 2214 | 0.0151 |
0.0226 | 247.0 | 2223 | 0.0173 |
0.0226 | 248.0 | 2232 | 0.0161 |
0.0226 | 249.0 | 2241 | 0.0151 |
0.0226 | 250.0 | 2250 | 0.0149 |
0.0226 | 251.0 | 2259 | 0.0156 |
0.0226 | 252.0 | 2268 | 0.0143 |
0.0226 | 253.0 | 2277 | 0.0163 |
0.0226 | 254.0 | 2286 | 0.0156 |
0.0226 | 255.0 | 2295 | 0.0156 |
0.0226 | 256.0 | 2304 | 0.0146 |
0.0226 | 257.0 | 2313 | 0.0149 |
0.0226 | 258.0 | 2322 | 0.0150 |
0.0226 | 259.0 | 2331 | 0.0158 |
0.0226 | 260.0 | 2340 | 0.0142 |
0.0226 | 261.0 | 2349 | 0.0147 |
0.0226 | 262.0 | 2358 | 0.0144 |
0.0226 | 263.0 | 2367 | 0.0145 |
0.0226 | 264.0 | 2376 | 0.0142 |
0.0226 | 265.0 | 2385 | 0.0143 |
0.0226 | 266.0 | 2394 | 0.0140 |
0.0226 | 267.0 | 2403 | 0.0141 |
0.0226 | 268.0 | 2412 | 0.0153 |
0.0226 | 269.0 | 2421 | 0.0141 |
0.0226 | 270.0 | 2430 | 0.0144 |
0.0226 | 271.0 | 2439 | 0.0139 |
0.0226 | 272.0 | 2448 | 0.0141 |
0.0226 | 273.0 | 2457 | 0.0141 |
0.0226 | 274.0 | 2466 | 0.0139 |
0.0226 | 275.0 | 2475 | 0.0141 |
0.0226 | 276.0 | 2484 | 0.0140 |
0.0226 | 277.0 | 2493 | 0.0142 |
0.0165 | 278.0 | 2502 | 0.0146 |
0.0165 | 279.0 | 2511 | 0.0141 |
0.0165 | 280.0 | 2520 | 0.0138 |
0.0165 | 281.0 | 2529 | 0.0138 |
0.0165 | 282.0 | 2538 | 0.0138 |
0.0165 | 283.0 | 2547 | 0.0138 |
0.0165 | 284.0 | 2556 | 0.0138 |
0.0165 | 285.0 | 2565 | 0.0139 |
0.0165 | 286.0 | 2574 | 0.0137 |
0.0165 | 287.0 | 2583 | 0.0137 |
0.0165 | 288.0 | 2592 | 0.0137 |
0.0165 | 289.0 | 2601 | 0.0138 |
0.0165 | 290.0 | 2610 | 0.0137 |
0.0165 | 291.0 | 2619 | 0.0137 |
0.0165 | 292.0 | 2628 | 0.0137 |
0.0165 | 293.0 | 2637 | 0.0137 |
0.0165 | 294.0 | 2646 | 0.0137 |
0.0165 | 295.0 | 2655 | 0.0137 |
0.0165 | 296.0 | 2664 | 0.0137 |
0.0165 | 297.0 | 2673 | 0.0137 |
0.0165 | 298.0 | 2682 | 0.0137 |
0.0165 | 299.0 | 2691 | 0.0137 |
0.0165 | 300.0 | 2700 | 0.0137 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 31
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Pyro-X2/polish_wikipedia_model
Base model
EleutherAI/pythia-70m