Speech_recognition / README.md
PuspaKamal's picture
End of training
06dbcc5 verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Trelis/llm-lingo
metrics:
  - wer
model-index:
  - name: Whisper Small En - MrOli
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Trelis/llm-lingo
          type: Trelis/llm-lingo
          args: 'config: En, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0

Whisper Small En - MrOli

This model is a fine-tuned version of openai/whisper-small on the Trelis/llm-lingo dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Wer: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0 1000.0 1000 0.0000 0.0

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1