segformer-b0-finetuned-batch1w5-15Dec

This model is a fine-tuned version of PushkarA07/segformer-b0-finetuned-batch2w5-15Dec on the PushkarA07/batch1-tiles_W5 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0038
  • Mean Iou: 0.9143
  • Mean Accuracy: 0.9529
  • Overall Accuracy: 0.9985
  • Accuracy Abnormality: 0.9066
  • Iou Abnormality: 0.8302

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Abnormality Iou Abnormality
0.0085 0.8333 10 0.0101 0.8170 0.8872 0.9963 0.7762 0.6376
0.0097 1.6667 20 0.0078 0.8448 0.8888 0.9971 0.7787 0.6926
0.0102 2.5 30 0.0071 0.8563 0.9028 0.9973 0.8068 0.7153
0.0062 3.3333 40 0.0066 0.8618 0.9005 0.9975 0.8018 0.7262
0.006 4.1667 50 0.0062 0.8693 0.9147 0.9976 0.8304 0.7410
0.0086 5.0 60 0.0060 0.8726 0.9194 0.9976 0.8398 0.7475
0.0056 5.8333 70 0.0056 0.8773 0.9128 0.9978 0.8264 0.7568
0.0044 6.6667 80 0.0056 0.8789 0.9270 0.9978 0.8550 0.7601
0.0045 7.5 90 0.0054 0.8818 0.9239 0.9978 0.8487 0.7658
0.0087 8.3333 100 0.0053 0.8850 0.9347 0.9979 0.8705 0.7721
0.0045 9.1667 110 0.0052 0.8835 0.9150 0.9979 0.8306 0.7692
0.0051 10.0 120 0.0051 0.8888 0.9360 0.9980 0.8730 0.7798
0.0045 10.8333 130 0.0049 0.8904 0.9270 0.9980 0.8547 0.7827
0.0068 11.6667 140 0.0048 0.8904 0.9290 0.9980 0.8589 0.7828
0.0029 12.5 150 0.0048 0.8924 0.9394 0.9980 0.8799 0.7867
0.0051 13.3333 160 0.0048 0.8943 0.9361 0.9981 0.8731 0.7906
0.0038 14.1667 170 0.0047 0.8953 0.9394 0.9981 0.8796 0.7926
0.0075 15.0 180 0.0047 0.8967 0.9416 0.9981 0.8841 0.7952
0.0054 15.8333 190 0.0047 0.8954 0.9315 0.9981 0.8637 0.7928
0.0031 16.6667 200 0.0046 0.8973 0.9373 0.9981 0.8755 0.7965
0.0049 17.5 210 0.0046 0.8970 0.9300 0.9982 0.8606 0.7958
0.0049 18.3333 220 0.0045 0.9001 0.9430 0.9982 0.8870 0.8019
0.0038 19.1667 230 0.0045 0.9002 0.9485 0.9982 0.8979 0.8022
0.0074 20.0 240 0.0045 0.9009 0.9424 0.9982 0.8856 0.8036
0.0048 20.8333 250 0.0045 0.9008 0.9473 0.9982 0.8955 0.8034
0.0058 21.6667 260 0.0045 0.9011 0.9464 0.9982 0.8938 0.8039
0.0051 22.5 270 0.0044 0.9029 0.9421 0.9983 0.8850 0.8075
0.0062 23.3333 280 0.0043 0.9026 0.9379 0.9983 0.8766 0.8070
0.0051 24.1667 290 0.0044 0.9027 0.9440 0.9982 0.8888 0.8071
0.0026 25.0 300 0.0043 0.9043 0.9443 0.9983 0.8894 0.8103
0.007 25.8333 310 0.0043 0.9042 0.9498 0.9983 0.9004 0.8102
0.0041 26.6667 320 0.0043 0.9046 0.9454 0.9983 0.8916 0.8110
0.0045 27.5 330 0.0043 0.9048 0.9427 0.9983 0.8862 0.8114
0.0041 28.3333 340 0.0043 0.9055 0.9490 0.9983 0.8988 0.8128
0.0024 29.1667 350 0.0042 0.9064 0.9485 0.9983 0.8979 0.8145
0.0035 30.0 360 0.0042 0.9061 0.9424 0.9983 0.8856 0.8139
0.003 30.8333 370 0.0042 0.9063 0.9523 0.9983 0.9056 0.8142
0.0054 31.6667 380 0.0042 0.9074 0.9447 0.9983 0.8902 0.8165
0.0054 32.5 390 0.0042 0.9064 0.9480 0.9983 0.8969 0.8144
0.0041 33.3333 400 0.0042 0.9053 0.9471 0.9983 0.8951 0.8123
0.0059 34.1667 410 0.0041 0.9075 0.9439 0.9983 0.8886 0.8166
0.0027 35.0 420 0.0042 0.9066 0.9452 0.9983 0.8912 0.8149
0.0052 35.8333 430 0.0042 0.9074 0.9474 0.9983 0.8956 0.8165
0.0042 36.6667 440 0.0041 0.9070 0.9457 0.9983 0.8922 0.8156
0.0037 37.5 450 0.0041 0.9076 0.9457 0.9983 0.8922 0.8170
0.0033 38.3333 460 0.0041 0.9084 0.9481 0.9984 0.8970 0.8185
0.0031 39.1667 470 0.0041 0.9085 0.9471 0.9984 0.8949 0.8187
0.0037 40.0 480 0.0042 0.9071 0.9543 0.9983 0.9096 0.8159
0.0048 40.8333 490 0.0041 0.9088 0.9500 0.9984 0.9008 0.8192
0.0042 41.6667 500 0.0041 0.9086 0.9474 0.9984 0.8957 0.8188
0.0024 42.5 510 0.0040 0.9095 0.9470 0.9984 0.8948 0.8206
0.0047 43.3333 520 0.0040 0.9091 0.9511 0.9984 0.9031 0.8198
0.0054 44.1667 530 0.0041 0.9080 0.9438 0.9984 0.8884 0.8176
0.0053 45.0 540 0.0041 0.9084 0.9460 0.9984 0.8928 0.8185
0.0033 45.8333 550 0.0041 0.9094 0.9515 0.9984 0.9038 0.8205
0.0044 46.6667 560 0.0042 0.9076 0.9580 0.9983 0.9171 0.8169
0.0021 47.5 570 0.0040 0.9095 0.9501 0.9984 0.9010 0.8206
0.0035 48.3333 580 0.0040 0.9092 0.9529 0.9983 0.9067 0.8200
0.0038 49.1667 590 0.0040 0.9109 0.9505 0.9984 0.9019 0.8234
0.004 50.0 600 0.0041 0.9103 0.9563 0.9984 0.9134 0.8223
0.0044 50.8333 610 0.0040 0.9106 0.9464 0.9984 0.8936 0.8229
0.0026 51.6667 620 0.0040 0.9104 0.9554 0.9984 0.9116 0.8225
0.0062 52.5 630 0.0040 0.9114 0.9510 0.9984 0.9027 0.8244
0.0023 53.3333 640 0.0040 0.9114 0.9470 0.9984 0.8948 0.8244
0.0029 54.1667 650 0.0040 0.9113 0.9508 0.9984 0.9024 0.8242
0.0042 55.0 660 0.0040 0.9116 0.9528 0.9984 0.9064 0.8248
0.0044 55.8333 670 0.0039 0.9121 0.9519 0.9984 0.9045 0.8258
0.0016 56.6667 680 0.0040 0.9116 0.9514 0.9984 0.9035 0.8248
0.0044 57.5 690 0.0039 0.9116 0.9533 0.9984 0.9075 0.8248
0.0031 58.3333 700 0.0039 0.9118 0.9497 0.9984 0.9002 0.8253
0.0038 59.1667 710 0.0039 0.9119 0.9509 0.9984 0.9025 0.8254
0.0042 60.0 720 0.0040 0.9117 0.9535 0.9984 0.9078 0.8250
0.0045 60.8333 730 0.0039 0.9119 0.9512 0.9984 0.9032 0.8254
0.0039 61.6667 740 0.0039 0.9122 0.9507 0.9984 0.9022 0.8260
0.0022 62.5 750 0.0040 0.9117 0.9562 0.9984 0.9134 0.8250
0.0039 63.3333 760 0.0039 0.9126 0.9502 0.9984 0.9012 0.8268
0.0031 64.1667 770 0.0039 0.9115 0.9507 0.9984 0.9021 0.8245
0.0037 65.0 780 0.0040 0.9118 0.9533 0.9984 0.9074 0.8252
0.0046 65.8333 790 0.0039 0.9123 0.9489 0.9984 0.8986 0.8261
0.0026 66.6667 800 0.0039 0.9127 0.9532 0.9984 0.9073 0.8269
0.0039 67.5 810 0.0039 0.9121 0.9469 0.9984 0.8946 0.8258
0.0025 68.3333 820 0.0039 0.9121 0.9541 0.9984 0.9091 0.8259
0.0044 69.1667 830 0.0039 0.9127 0.9531 0.9984 0.9069 0.8270
0.0049 70.0 840 0.0039 0.9123 0.9546 0.9984 0.9100 0.8263
0.0038 70.8333 850 0.0039 0.9129 0.9527 0.9984 0.9062 0.8273
0.0053 71.6667 860 0.0039 0.9131 0.9534 0.9984 0.9077 0.8278
0.0049 72.5 870 0.0039 0.9128 0.9538 0.9984 0.9083 0.8272
0.003 73.3333 880 0.0039 0.9130 0.9503 0.9984 0.9012 0.8276
0.0025 74.1667 890 0.0039 0.9124 0.9583 0.9984 0.9176 0.8264
0.0035 75.0 900 0.0039 0.9131 0.9509 0.9984 0.9026 0.8278
0.0028 75.8333 910 0.0039 0.9128 0.9559 0.9984 0.9127 0.8272
0.0027 76.6667 920 0.0039 0.9128 0.9528 0.9984 0.9064 0.8272
0.0033 77.5 930 0.0039 0.9133 0.9539 0.9984 0.9086 0.8282
0.0033 78.3333 940 0.0039 0.9135 0.9529 0.9984 0.9065 0.8285
0.0056 79.1667 950 0.0039 0.9134 0.9529 0.9984 0.9067 0.8283
0.0063 80.0 960 0.0039 0.9132 0.9495 0.9984 0.8996 0.8279
0.0057 80.8333 970 0.0039 0.9130 0.9563 0.9984 0.9134 0.8276
0.0021 81.6667 980 0.0039 0.9136 0.9511 0.9985 0.9029 0.8287
0.0043 82.5 990 0.0039 0.9130 0.9563 0.9984 0.9136 0.8275
0.0048 83.3333 1000 0.0039 0.9137 0.9525 0.9984 0.9057 0.8289
0.0043 84.1667 1010 0.0039 0.9133 0.9514 0.9984 0.9035 0.8282
0.0037 85.0 1020 0.0039 0.9137 0.9542 0.9984 0.9092 0.8289
0.0042 85.8333 1030 0.0038 0.9137 0.9501 0.9985 0.9010 0.8290
0.0039 86.6667 1040 0.0039 0.9138 0.9550 0.9984 0.9108 0.8292
0.0027 87.5 1050 0.0038 0.9139 0.9517 0.9985 0.9041 0.8294
0.0034 88.3333 1060 0.0038 0.9138 0.9526 0.9985 0.9060 0.8291
0.0037 89.1667 1070 0.0039 0.9137 0.9550 0.9984 0.9109 0.8289
0.0029 90.0 1080 0.0038 0.9141 0.9509 0.9985 0.9025 0.8297
0.0038 90.8333 1090 0.0038 0.9139 0.9535 0.9985 0.9078 0.8294
0.0066 91.6667 1100 0.0039 0.9138 0.9545 0.9984 0.9097 0.8292
0.0037 92.5 1110 0.0039 0.9138 0.9547 0.9984 0.9102 0.8292
0.0053 93.3333 1120 0.0038 0.9143 0.9518 0.9985 0.9044 0.8301
0.0039 94.1667 1130 0.0038 0.9141 0.9523 0.9985 0.9054 0.8298
0.0049 95.0 1140 0.0038 0.9143 0.9520 0.9985 0.9047 0.8302
0.004 95.8333 1150 0.0038 0.9142 0.9535 0.9985 0.9077 0.8300
0.0033 96.6667 1160 0.0038 0.9142 0.9536 0.9985 0.9080 0.8300
0.0037 97.5 1170 0.0038 0.9141 0.9536 0.9985 0.9079 0.8298
0.0036 98.3333 1180 0.0038 0.9140 0.9536 0.9985 0.9080 0.8295
0.0042 99.1667 1190 0.0038 0.9141 0.9538 0.9985 0.9085 0.8298
0.0035 100.0 1200 0.0038 0.9143 0.9529 0.9985 0.9066 0.8302

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
25
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PushkarA07/segformer-b0-finetuned-batch1w5-15Dec

Unable to build the model tree, the base model loops to the model itself. Learn more.