Prot10's picture
End of training
8ba28c8
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-for-pre_evaluation
    results: []

vit-base-patch16-224-for-pre_evaluation

This model is a fine-tuned version of google/vit-base-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6048
  • Accuracy: 0.3929

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5774 0.98 16 1.5109 0.3022
1.4794 1.97 32 1.4942 0.3242
1.4536 2.95 48 1.4943 0.3187
1.421 4.0 65 1.4247 0.3407
1.3882 4.98 81 1.4944 0.3462
1.3579 5.97 97 1.4180 0.3571
1.2838 6.95 113 1.4693 0.3681
1.2695 8.0 130 1.4359 0.3434
1.2016 8.98 146 1.4656 0.3599
1.2087 9.97 162 1.4550 0.3379
1.206 10.95 178 1.5056 0.3516
1.1236 12.0 195 1.5003 0.3434
1.0534 12.98 211 1.5193 0.3269
1.0024 13.97 227 1.4890 0.3681
0.9767 14.95 243 1.5628 0.3434
0.9201 16.0 260 1.6306 0.3516
0.9136 16.98 276 1.5715 0.3626
0.8566 17.97 292 1.5966 0.3654
0.8273 18.95 308 1.6048 0.3929
0.7825 20.0 325 1.6175 0.3846
0.736 20.98 341 1.6526 0.3929
0.7008 21.97 357 1.6563 0.3736
0.6714 22.95 373 1.7319 0.3901
0.7039 24.0 390 1.6866 0.3929
0.628 24.98 406 1.7023 0.3791
0.6182 25.97 422 1.7301 0.3901
0.5957 26.95 438 1.7157 0.3846
0.5973 28.0 455 1.7478 0.3709
0.5655 28.98 471 1.7377 0.3736
0.5631 29.54 480 1.7374 0.3736

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3