Russian-BERT / README.md
Priyanka-Balivada's picture
Russian-BERT
4bb1fd7 verified
|
raw
history blame
2.16 kB
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: russian-BERT
    results: []

russian-BERT

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5708
  • Accuracy: 0.8933
  • Precision: 0.8933
  • Recall: 0.8933
  • Micro-avg-recall: 0.8933
  • Micro-avg-precision: 0.8933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Micro-avg-recall Micro-avg-precision
0.4304 1.0 750 0.3997 0.8397 0.8399 0.8397 0.8397 0.8397
0.3907 2.0 1500 0.3305 0.873 0.8791 0.873 0.873 0.873
0.1386 3.0 2250 0.3770 0.888 0.8898 0.888 0.888 0.888
0.0631 4.0 3000 0.5419 0.8887 0.8887 0.8887 0.8887 0.8887
0.1276 5.0 3750 0.5708 0.8933 0.8933 0.8933 0.8933 0.8933

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1