SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("Prashasst/anime-recommendation-model")
# Run inference
sentences = [
'I want anime like onepiece.',
'Pirates',
'Action',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
anime-recommendation-dev
andanime-recommendation-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | anime-recommendation-dev | anime-recommendation-test |
---|---|---|
pearson_cosine | 0.6145 | 0.6536 |
spearman_cosine | 0.6215 | 0.6394 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,353 training samples
- Columns:
description
,genre
, andlabel
- Approximate statistics based on the first 1000 samples:
description genre label type string string float details - min: 15 tokens
- mean: 97.39 tokens
- max: 193 tokens
- min: 3 tokens
- mean: 3.82 tokens
- max: 8 tokens
- min: 0.1
- mean: 0.71
- max: 1.0
- Samples:
description genre label Mitsuha Miyamizu, a high school girl, yearns to live the life of a boy in the bustling city of Tokyoโa dream that stands in stark contrast to her present life in the countryside. Meanwhile in the city, Taki Tachibana lives a busy life as a high school student while juggling his part-time job and hopes for a future in architecture.
Environmental
0.6
Jinta Yadomi and his group of childhood friends have become estranged after a tragic accident split them apart. Now in their high school years, a sudden surprise forces each of them to confront their guilt over what happened that day and come to terms with the ghosts of their past.
Hikikomori
0.79
The second season of Ansatsu Kyoushitsu.
Episodic
0.44
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 294 evaluation samples
- Columns:
description
,genre
, andlabel
- Approximate statistics based on the first 294 samples:
description genre label type string string float details - min: 15 tokens
- mean: 92.48 tokens
- max: 193 tokens
- min: 3 tokens
- mean: 3.73 tokens
- max: 8 tokens
- min: 0.1
- mean: 0.69
- max: 1.0
- Samples:
description genre label Summer is here, and the heroes of Class 1-A and 1-B are in for the toughest training camp of their lives A group of seasoned pros pushes everyones Quirks to new heights as the students face one overwhelming challenge after another. Braving the elements in this secret location becomes the least of their worries when routine training turns into a critical struggle for survival.
Transgender
0.2
"In order for something to be obtained, something of equal value must be lost."
Cyborg
0.72
In the story, Subaru Natsuki is an ordinary high school student who is lost in an alternate world, where he is rescued by a beautiful, silver-haired girl. He stays near her to return the favor, but the destiny she is burdened with is more than Subaru can imagine. Enemies attack one by one, and both of them are killed. He then finds out he has the power to rewind death, back to the time he first came to this world. But only he remembers what has happened since.
Primarily Female Cast
0.61
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | anime-recommendation-dev_spearman_cosine | anime-recommendation-test_spearman_cosine |
---|---|---|---|---|---|
0.0068 | 1 | 0.3882 | - | - | - |
0.0135 | 2 | 0.2697 | - | - | - |
0.0203 | 3 | 0.2648 | - | - | - |
0.0270 | 4 | 0.3022 | - | - | - |
0.0338 | 5 | 0.2665 | - | - | - |
0.0405 | 6 | 0.2923 | - | - | - |
0.0473 | 7 | 0.3165 | - | - | - |
0.0541 | 8 | 0.2069 | - | - | - |
0.0608 | 9 | 0.271 | - | - | - |
0.0676 | 10 | 0.1974 | - | - | - |
0.0743 | 11 | 0.156 | - | - | - |
0.0811 | 12 | 0.1035 | - | - | - |
0.0878 | 13 | 0.1046 | - | - | - |
0.0946 | 14 | 0.0579 | - | - | - |
0.1014 | 15 | 0.0904 | - | - | - |
0.1081 | 16 | 0.0734 | - | - | - |
0.1149 | 17 | 0.0396 | - | - | - |
0.1216 | 18 | 0.0219 | - | - | - |
0.1284 | 19 | 0.0672 | - | - | - |
0.1351 | 20 | 0.0567 | - | - | - |
0.1419 | 21 | 0.0969 | - | - | - |
0.1486 | 22 | 0.0258 | - | - | - |
0.1554 | 23 | 0.1174 | - | - | - |
0.1622 | 24 | 0.0334 | - | - | - |
0.1689 | 25 | 0.0661 | - | - | - |
0.1757 | 26 | 0.0365 | - | - | - |
0.1824 | 27 | 0.049 | - | - | - |
0.1892 | 28 | 0.0889 | - | - | - |
0.1959 | 29 | 0.0179 | - | - | - |
0.2027 | 30 | 0.0255 | - | - | - |
0.2095 | 31 | 0.0312 | - | - | - |
0.2162 | 32 | 0.0312 | - | - | - |
0.2230 | 33 | 0.0619 | - | - | - |
0.2297 | 34 | 0.0358 | - | - | - |
0.2365 | 35 | 0.0468 | - | - | - |
0.2432 | 36 | 0.0601 | - | - | - |
0.25 | 37 | 0.0546 | - | - | - |
0.2568 | 38 | 0.0411 | - | - | - |
0.2635 | 39 | 0.0332 | - | - | - |
0.2703 | 40 | 0.0479 | - | - | - |
0.2770 | 41 | 0.0657 | - | - | - |
0.2838 | 42 | 0.0161 | - | - | - |
0.2905 | 43 | 0.0323 | - | - | - |
0.2973 | 44 | 0.0794 | - | - | - |
0.3041 | 45 | 0.0264 | - | - | - |
0.3108 | 46 | 0.0391 | - | - | - |
0.3176 | 47 | 0.0514 | - | - | - |
0.3243 | 48 | 0.0276 | - | - | - |
0.3311 | 49 | 0.0653 | - | - | - |
0.3378 | 50 | 0.0343 | - | - | - |
0.3446 | 51 | 0.0369 | - | - | - |
0.3514 | 52 | 0.0336 | - | - | - |
0.3581 | 53 | 0.0368 | - | - | - |
0.3649 | 54 | 0.0477 | - | - | - |
0.3716 | 55 | 0.0358 | - | - | - |
0.3784 | 56 | 0.0312 | - | - | - |
0.3851 | 57 | 0.0388 | - | - | - |
0.3919 | 58 | 0.0415 | - | - | - |
0.3986 | 59 | 0.02 | - | - | - |
0.4054 | 60 | 0.0459 | - | - | - |
0.4122 | 61 | 0.0302 | - | - | - |
0.4189 | 62 | 0.0519 | - | - | - |
0.4257 | 63 | 0.0283 | - | - | - |
0.4324 | 64 | 0.04 | - | - | - |
0.4392 | 65 | 0.0146 | - | - | - |
0.4459 | 66 | 0.033 | - | - | - |
0.4527 | 67 | 0.0365 | - | - | - |
0.4595 | 68 | 0.0579 | - | - | - |
0.4662 | 69 | 0.0253 | - | - | - |
0.4730 | 70 | 0.033 | - | - | - |
0.4797 | 71 | 0.0258 | - | - | - |
0.4865 | 72 | 0.0181 | - | - | - |
0.4932 | 73 | 0.0334 | - | - | - |
0.5 | 74 | 0.0415 | - | - | - |
0.5068 | 75 | 0.0258 | - | - | - |
0.5135 | 76 | 0.0304 | - | - | - |
0.5203 | 77 | 0.0211 | - | - | - |
0.5270 | 78 | 0.0334 | - | - | - |
0.5338 | 79 | 0.0278 | - | - | - |
0.5405 | 80 | 0.0209 | - | - | - |
0.5473 | 81 | 0.0391 | - | - | - |
0.5541 | 82 | 0.0274 | - | - | - |
0.5608 | 83 | 0.0213 | - | - | - |
0.5676 | 84 | 0.0293 | - | - | - |
0.5743 | 85 | 0.0205 | - | - | - |
0.5811 | 86 | 0.0258 | - | - | - |
0.5878 | 87 | 0.0262 | - | - | - |
0.5946 | 88 | 0.0109 | - | - | - |
0.6014 | 89 | 0.0268 | - | - | - |
0.6081 | 90 | 0.0304 | - | - | - |
0.6149 | 91 | 0.0328 | - | - | - |
0.6216 | 92 | 0.0173 | - | - | - |
0.6284 | 93 | 0.0253 | - | - | - |
0.6351 | 94 | 0.0245 | - | - | - |
0.6419 | 95 | 0.0232 | - | - | - |
0.6486 | 96 | 0.0309 | - | - | - |
0.6554 | 97 | 0.0209 | - | - | - |
0.6622 | 98 | 0.0169 | - | - | - |
0.6689 | 99 | 0.024 | - | - | - |
0.6757 | 100 | 0.0166 | 0.0284 | 0.6215 | - |
0.6824 | 101 | 0.0202 | - | - | - |
0.6892 | 102 | 0.0181 | - | - | - |
0.6959 | 103 | 0.0413 | - | - | - |
0.7027 | 104 | 0.0537 | - | - | - |
0.7095 | 105 | 0.0241 | - | - | - |
0.7162 | 106 | 0.0199 | - | - | - |
0.7230 | 107 | 0.0227 | - | - | - |
0.7297 | 108 | 0.0283 | - | - | - |
0.7365 | 109 | 0.0372 | - | - | - |
0.7432 | 110 | 0.0193 | - | - | - |
0.75 | 111 | 0.0147 | - | - | - |
0.7568 | 112 | 0.0594 | - | - | - |
0.7635 | 113 | 0.0185 | - | - | - |
0.7703 | 114 | 0.0674 | - | - | - |
0.7770 | 115 | 0.0212 | - | - | - |
0.7838 | 116 | 0.0268 | - | - | - |
0.7905 | 117 | 0.0233 | - | - | - |
0.7973 | 118 | 0.0276 | - | - | - |
0.8041 | 119 | 0.0242 | - | - | - |
0.8108 | 120 | 0.034 | - | - | - |
0.8176 | 121 | 0.0231 | - | - | - |
0.8243 | 122 | 0.0252 | - | - | - |
0.8311 | 123 | 0.0294 | - | - | - |
0.8378 | 124 | 0.0205 | - | - | - |
0.8446 | 125 | 0.0302 | - | - | - |
0.8514 | 126 | 0.0468 | - | - | - |
0.8581 | 127 | 0.0311 | - | - | - |
0.8649 | 128 | 0.0365 | - | - | - |
0.8716 | 129 | 0.0257 | - | - | - |
0.8784 | 130 | 0.0339 | - | - | - |
0.8851 | 131 | 0.0359 | - | - | - |
0.8919 | 132 | 0.0404 | - | - | - |
0.8986 | 133 | 0.0223 | - | - | - |
0.9054 | 134 | 0.0232 | - | - | - |
0.9122 | 135 | 0.0295 | - | - | - |
0.9189 | 136 | 0.0244 | - | - | - |
0.9257 | 137 | 0.0168 | - | - | - |
0.9324 | 138 | 0.0319 | - | - | - |
0.9392 | 139 | 0.0328 | - | - | - |
0.9459 | 140 | 0.0295 | - | - | - |
0.9527 | 141 | 0.0262 | - | - | - |
0.9595 | 142 | 0.0238 | - | - | - |
0.9662 | 143 | 0.0181 | - | - | - |
0.9730 | 144 | 0.017 | - | - | - |
0.9797 | 145 | 0.0244 | - | - | - |
0.9865 | 146 | 0.0264 | - | - | - |
0.9932 | 147 | 0.0194 | - | - | - |
1.0 | 148 | 0.0028 | - | - | 0.6394 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 127
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Prashasst/anime-recommendation-model
Base model
sentence-transformers/all-mpnet-base-v2Space using Prashasst/anime-recommendation-model 1
Evaluation results
- Pearson Cosine on anime recommendation devself-reported0.614
- Spearman Cosine on anime recommendation devself-reported0.622
- Pearson Cosine on anime recommendation testself-reported0.654
- Spearman Cosine on anime recommendation testself-reported0.639