ner_lora_output

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1698
  • Ank Name: {'precision': 0.6426229508196721, 'recall': 0.1694036300777874, 'f1': 0.26812585499316005, 'number': 1157}
  • Ate: {'precision': 0.08817204301075268, 'recall': 0.2789115646258503, 'f1': 0.13398692810457516, 'number': 147}
  • Ccount Number: {'precision': 0.05, 'recall': 0.024390243902439025, 'f1': 0.03278688524590164, 'number': 123}
  • Ddress: {'precision': 0.13318284424379231, 'recall': 0.4306569343065693, 'f1': 0.20344827586206896, 'number': 137}
  • Egree: {'precision': 0.12087912087912088, 'recall': 0.6149068322981367, 'f1': 0.20204081632653062, 'number': 161}
  • Erson: {'precision': 0.025510204081632654, 'recall': 0.038461538461538464, 'f1': 0.030674846625766874, 'number': 130}
  • Hone Number: {'precision': 0.06790123456790123, 'recall': 0.1864406779661017, 'f1': 0.09954751131221717, 'number': 177}
  • Ity: {'precision': 0.022556390977443608, 'recall': 0.022222222222222223, 'f1': 0.022388059701492536, 'number': 135}
  • Mail: {'precision': 0.4382855301321302, 'recall': 0.9477351916376306, 'f1': 0.5993829881004847, 'number': 1435}
  • Niversity: {'precision': 0.042682926829268296, 'recall': 0.05384615384615385, 'f1': 0.047619047619047616, 'number': 130}
  • Obby: {'precision': 0.028985507246376812, 'recall': 0.015267175572519083, 'f1': 0.019999999999999997, 'number': 131}
  • Ob Title: {'precision': 0.008547008547008548, 'recall': 0.020833333333333332, 'f1': 0.012121212121212121, 'number': 144}
  • Ostal Code: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 139}
  • Ountry: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 92}
  • Raduation Year: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 128}
  • Redit Card Number: {'precision': 0.08717310087173101, 'recall': 0.4166666666666667, 'f1': 0.14418125643666324, 'number': 168}
  • Sn: {'precision': 0.430939226519337, 'recall': 0.06372549019607843, 'f1': 0.11103202846975088, 'number': 1224}
  • Tate: {'precision': 0.25925925925925924, 'recall': 0.00903225806451613, 'f1': 0.01745635910224439, 'number': 775}
  • Vv: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 146}
  • Xpiration Date: {'precision': 0.8, 'recall': 0.07920792079207921, 'f1': 0.14414414414414414, 'number': 808}
  • Overall Precision: 0.2630
  • Overall Recall: 0.2711
  • Overall F1: 0.2670
  • Overall Accuracy: 0.4303

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Ank Name Ate Ccount Number Ddress Egree Erson Hone Number Ity Mail Niversity Obby Ob Title Ostal Code Ountry Raduation Year Redit Card Number Sn Tate Vv Xpiration Date Overall Precision Overall Recall Overall F1 Overall Accuracy
2.883 1.0 500 2.8381 {'precision': 0.14285714285714285, 'recall': 0.000864304235090752, 'f1': 0.0017182130584192437, 'number': 1157} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 147} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 123} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 137} {'precision': 0.007855459544383346, 'recall': 0.12422360248447205, 'f1': 0.014776505356483192, 'number': 161} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 130} {'precision': 0.0045193097781429745, 'recall': 0.062146892655367235, 'f1': 0.008425890463423976, 'number': 177} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 135} {'precision': 0.2929440389294404, 'recall': 0.4195121951219512, 'f1': 0.3449856733524355, 'number': 1435} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 130} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 131} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 144} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 139} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 92} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 128} {'precision': 0.0044943820224719105, 'recall': 0.07142857142857142, 'f1': 0.008456659619450317, 'number': 168} {'precision': 0.18518518518518517, 'recall': 0.004084967320261438, 'f1': 0.007993605115907274, 'number': 1224} {'precision': 0.5, 'recall': 0.0012903225806451613, 'f1': 0.002574002574002574, 'number': 775} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 146} {'precision': 0.6956521739130435, 'recall': 0.019801980198019802, 'f1': 0.03850782190132371, 'number': 808} 0.0611 0.0892 0.0725 0.1993
2.5253 2.0 1000 2.3928 {'precision': 0.49382716049382713, 'recall': 0.03457216940363008, 'f1': 0.06462035541195477, 'number': 1157} {'precision': 0.04771784232365145, 'recall': 0.1564625850340136, 'f1': 0.07313195548489666, 'number': 147} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 123} {'precision': 0.1001890359168242, 'recall': 0.38686131386861317, 'f1': 0.15915915915915915, 'number': 137} {'precision': 0.08584905660377358, 'recall': 0.5652173913043478, 'f1': 0.14905814905814904, 'number': 161} {'precision': 0.011764705882352941, 'recall': 0.015384615384615385, 'f1': 0.013333333333333332, 'number': 130} {'precision': 0.040268456375838924, 'recall': 0.1694915254237288, 'f1': 0.0650759219088937, 'number': 177} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 135} {'precision': 0.3897707231040564, 'recall': 0.9240418118466899, 'f1': 0.5482737233822617, 'number': 1435} {'precision': 0.017699115044247787, 'recall': 0.015384615384615385, 'f1': 0.01646090534979424, 'number': 130} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 131} {'precision': 0.004016064257028112, 'recall': 0.006944444444444444, 'f1': 0.0050890585241730275, 'number': 144} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 139} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 92} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 128} {'precision': 0.06563354603463993, 'recall': 0.42857142857142855, 'f1': 0.11383399209486166, 'number': 168} {'precision': 0.23577235772357724, 'recall': 0.02369281045751634, 'f1': 0.04305864884929473, 'number': 1224} {'precision': 0.14285714285714285, 'recall': 0.0012903225806451613, 'f1': 0.0025575447570332483, 'number': 775} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 146} {'precision': 0.65, 'recall': 0.03217821782178218, 'f1': 0.06132075471698113, 'number': 808} 0.2061 0.2265 0.2158 0.3542
2.2675 3.0 1500 2.1698 {'precision': 0.6426229508196721, 'recall': 0.1694036300777874, 'f1': 0.26812585499316005, 'number': 1157} {'precision': 0.08817204301075268, 'recall': 0.2789115646258503, 'f1': 0.13398692810457516, 'number': 147} {'precision': 0.05, 'recall': 0.024390243902439025, 'f1': 0.03278688524590164, 'number': 123} {'precision': 0.13318284424379231, 'recall': 0.4306569343065693, 'f1': 0.20344827586206896, 'number': 137} {'precision': 0.12087912087912088, 'recall': 0.6149068322981367, 'f1': 0.20204081632653062, 'number': 161} {'precision': 0.025510204081632654, 'recall': 0.038461538461538464, 'f1': 0.030674846625766874, 'number': 130} {'precision': 0.06790123456790123, 'recall': 0.1864406779661017, 'f1': 0.09954751131221717, 'number': 177} {'precision': 0.022556390977443608, 'recall': 0.022222222222222223, 'f1': 0.022388059701492536, 'number': 135} {'precision': 0.4382855301321302, 'recall': 0.9477351916376306, 'f1': 0.5993829881004847, 'number': 1435} {'precision': 0.042682926829268296, 'recall': 0.05384615384615385, 'f1': 0.047619047619047616, 'number': 130} {'precision': 0.028985507246376812, 'recall': 0.015267175572519083, 'f1': 0.019999999999999997, 'number': 131} {'precision': 0.008547008547008548, 'recall': 0.020833333333333332, 'f1': 0.012121212121212121, 'number': 144} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 139} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 92} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 128} {'precision': 0.08717310087173101, 'recall': 0.4166666666666667, 'f1': 0.14418125643666324, 'number': 168} {'precision': 0.430939226519337, 'recall': 0.06372549019607843, 'f1': 0.11103202846975088, 'number': 1224} {'precision': 0.25925925925925924, 'recall': 0.00903225806451613, 'f1': 0.01745635910224439, 'number': 775} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 146} {'precision': 0.8, 'recall': 0.07920792079207921, 'f1': 0.14414414414414414, 'number': 808} 0.2630 0.2711 0.2670 0.4303

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
9
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Prasanna05/ner_lora_output

Adapter
(34)
this model