ner_lora_output
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1698
- Ank Name: {'precision': 0.6426229508196721, 'recall': 0.1694036300777874, 'f1': 0.26812585499316005, 'number': 1157}
- Ate: {'precision': 0.08817204301075268, 'recall': 0.2789115646258503, 'f1': 0.13398692810457516, 'number': 147}
- Ccount Number: {'precision': 0.05, 'recall': 0.024390243902439025, 'f1': 0.03278688524590164, 'number': 123}
- Ddress: {'precision': 0.13318284424379231, 'recall': 0.4306569343065693, 'f1': 0.20344827586206896, 'number': 137}
- Egree: {'precision': 0.12087912087912088, 'recall': 0.6149068322981367, 'f1': 0.20204081632653062, 'number': 161}
- Erson: {'precision': 0.025510204081632654, 'recall': 0.038461538461538464, 'f1': 0.030674846625766874, 'number': 130}
- Hone Number: {'precision': 0.06790123456790123, 'recall': 0.1864406779661017, 'f1': 0.09954751131221717, 'number': 177}
- Ity: {'precision': 0.022556390977443608, 'recall': 0.022222222222222223, 'f1': 0.022388059701492536, 'number': 135}
- Mail: {'precision': 0.4382855301321302, 'recall': 0.9477351916376306, 'f1': 0.5993829881004847, 'number': 1435}
- Niversity: {'precision': 0.042682926829268296, 'recall': 0.05384615384615385, 'f1': 0.047619047619047616, 'number': 130}
- Obby: {'precision': 0.028985507246376812, 'recall': 0.015267175572519083, 'f1': 0.019999999999999997, 'number': 131}
- Ob Title: {'precision': 0.008547008547008548, 'recall': 0.020833333333333332, 'f1': 0.012121212121212121, 'number': 144}
- Ostal Code: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 139}
- Ountry: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 92}
- Raduation Year: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 128}
- Redit Card Number: {'precision': 0.08717310087173101, 'recall': 0.4166666666666667, 'f1': 0.14418125643666324, 'number': 168}
- Sn: {'precision': 0.430939226519337, 'recall': 0.06372549019607843, 'f1': 0.11103202846975088, 'number': 1224}
- Tate: {'precision': 0.25925925925925924, 'recall': 0.00903225806451613, 'f1': 0.01745635910224439, 'number': 775}
- Vv: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 146}
- Xpiration Date: {'precision': 0.8, 'recall': 0.07920792079207921, 'f1': 0.14414414414414414, 'number': 808}
- Overall Precision: 0.2630
- Overall Recall: 0.2711
- Overall F1: 0.2670
- Overall Accuracy: 0.4303
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Ank Name | Ate | Ccount Number | Ddress | Egree | Erson | Hone Number | Ity | Niversity | Obby | Ob Title | Ostal Code | Ountry | Raduation Year | Redit Card Number | Sn | Tate | Vv | Xpiration Date | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.883 | 1.0 | 500 | 2.8381 | {'precision': 0.14285714285714285, 'recall': 0.000864304235090752, 'f1': 0.0017182130584192437, 'number': 1157} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 147} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 123} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 137} | {'precision': 0.007855459544383346, 'recall': 0.12422360248447205, 'f1': 0.014776505356483192, 'number': 161} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 130} | {'precision': 0.0045193097781429745, 'recall': 0.062146892655367235, 'f1': 0.008425890463423976, 'number': 177} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 135} | {'precision': 0.2929440389294404, 'recall': 0.4195121951219512, 'f1': 0.3449856733524355, 'number': 1435} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 130} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 131} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 144} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 139} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 92} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 128} | {'precision': 0.0044943820224719105, 'recall': 0.07142857142857142, 'f1': 0.008456659619450317, 'number': 168} | {'precision': 0.18518518518518517, 'recall': 0.004084967320261438, 'f1': 0.007993605115907274, 'number': 1224} | {'precision': 0.5, 'recall': 0.0012903225806451613, 'f1': 0.002574002574002574, 'number': 775} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 146} | {'precision': 0.6956521739130435, 'recall': 0.019801980198019802, 'f1': 0.03850782190132371, 'number': 808} | 0.0611 | 0.0892 | 0.0725 | 0.1993 |
2.5253 | 2.0 | 1000 | 2.3928 | {'precision': 0.49382716049382713, 'recall': 0.03457216940363008, 'f1': 0.06462035541195477, 'number': 1157} | {'precision': 0.04771784232365145, 'recall': 0.1564625850340136, 'f1': 0.07313195548489666, 'number': 147} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 123} | {'precision': 0.1001890359168242, 'recall': 0.38686131386861317, 'f1': 0.15915915915915915, 'number': 137} | {'precision': 0.08584905660377358, 'recall': 0.5652173913043478, 'f1': 0.14905814905814904, 'number': 161} | {'precision': 0.011764705882352941, 'recall': 0.015384615384615385, 'f1': 0.013333333333333332, 'number': 130} | {'precision': 0.040268456375838924, 'recall': 0.1694915254237288, 'f1': 0.0650759219088937, 'number': 177} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 135} | {'precision': 0.3897707231040564, 'recall': 0.9240418118466899, 'f1': 0.5482737233822617, 'number': 1435} | {'precision': 0.017699115044247787, 'recall': 0.015384615384615385, 'f1': 0.01646090534979424, 'number': 130} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 131} | {'precision': 0.004016064257028112, 'recall': 0.006944444444444444, 'f1': 0.0050890585241730275, 'number': 144} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 139} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 92} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 128} | {'precision': 0.06563354603463993, 'recall': 0.42857142857142855, 'f1': 0.11383399209486166, 'number': 168} | {'precision': 0.23577235772357724, 'recall': 0.02369281045751634, 'f1': 0.04305864884929473, 'number': 1224} | {'precision': 0.14285714285714285, 'recall': 0.0012903225806451613, 'f1': 0.0025575447570332483, 'number': 775} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 146} | {'precision': 0.65, 'recall': 0.03217821782178218, 'f1': 0.06132075471698113, 'number': 808} | 0.2061 | 0.2265 | 0.2158 | 0.3542 |
2.2675 | 3.0 | 1500 | 2.1698 | {'precision': 0.6426229508196721, 'recall': 0.1694036300777874, 'f1': 0.26812585499316005, 'number': 1157} | {'precision': 0.08817204301075268, 'recall': 0.2789115646258503, 'f1': 0.13398692810457516, 'number': 147} | {'precision': 0.05, 'recall': 0.024390243902439025, 'f1': 0.03278688524590164, 'number': 123} | {'precision': 0.13318284424379231, 'recall': 0.4306569343065693, 'f1': 0.20344827586206896, 'number': 137} | {'precision': 0.12087912087912088, 'recall': 0.6149068322981367, 'f1': 0.20204081632653062, 'number': 161} | {'precision': 0.025510204081632654, 'recall': 0.038461538461538464, 'f1': 0.030674846625766874, 'number': 130} | {'precision': 0.06790123456790123, 'recall': 0.1864406779661017, 'f1': 0.09954751131221717, 'number': 177} | {'precision': 0.022556390977443608, 'recall': 0.022222222222222223, 'f1': 0.022388059701492536, 'number': 135} | {'precision': 0.4382855301321302, 'recall': 0.9477351916376306, 'f1': 0.5993829881004847, 'number': 1435} | {'precision': 0.042682926829268296, 'recall': 0.05384615384615385, 'f1': 0.047619047619047616, 'number': 130} | {'precision': 0.028985507246376812, 'recall': 0.015267175572519083, 'f1': 0.019999999999999997, 'number': 131} | {'precision': 0.008547008547008548, 'recall': 0.020833333333333332, 'f1': 0.012121212121212121, 'number': 144} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 139} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 92} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 128} | {'precision': 0.08717310087173101, 'recall': 0.4166666666666667, 'f1': 0.14418125643666324, 'number': 168} | {'precision': 0.430939226519337, 'recall': 0.06372549019607843, 'f1': 0.11103202846975088, 'number': 1224} | {'precision': 0.25925925925925924, 'recall': 0.00903225806451613, 'f1': 0.01745635910224439, 'number': 775} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 146} | {'precision': 0.8, 'recall': 0.07920792079207921, 'f1': 0.14414414414414414, 'number': 808} | 0.2630 | 0.2711 | 0.2670 | 0.4303 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3
- Downloads last month
- 9
Model tree for Prasanna05/ner_lora_output
Base model
google-bert/bert-base-cased