kyujinpy's picture
Upload README.md
81219f5 verified
---
language:
- ko
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
datasets:
- kyujinpy/KOR-OpenOrca-Platypus-v3
---
# **PracticeLLM/KoSOLAR-Platypus-10.7B**
## Model Details
**Model Developers** Kyujin Han (kyujinpy)
**Method**
LoRA with quantization.
**Base Model**
[yanolja/KoSOLAR-10.7B-v0.2](https://huggingface.co./yanolja/KoSOLAR-10.7B-v0.2)
**Dataset**
[kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3).
**Hyperparameters**
```
python finetune.py \
--base_model yanolja/KoSOLAR-10.7B-v0.2 \
--data-path kyujinpy/KOR-OpenOrca-Platypus-v3 \
--output_dir ./Ko-PlatypusSOLAR-10.7B \
--batch_size 64 \
--micro_batch_size 1 \
--num_epochs 5 \
--learning_rate 2e-5 \
--cutoff_len 2048 \
--val_set_size 0 \
--lora_r 64 \
--lora_alpha 64 \
--lora_dropout 0.05 \
--lora_target_modules '[embed_tokens, q_proj, k_proj, v_proj, o_proj, gate_proj, down_proj, up_proj, lm_head]' \
--train_on_inputs False \
--add_eos_token False \
--group_by_length False \
--prompt_template_name en_simple \
--lr_scheduler 'cosine' \
```
> Share all of things. It is my belief.
# **Model Benchmark**
## Open Ko-LLM leaderboard & lm-evaluation-harness(zero-shot)
- Follow up as [Ko-link](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard).
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Ko-CommonGenV2 |
| --- | --- | --- | --- | --- | --- | --- |
| PracticeLLM/KoSOLAR-Platypus-10.7B | --- | --- | --- | --- | --- | --- |
| [LDCC/LDCC-SOLAR-10.7B](https://huggingface.co./LDCC/LDCC-SOLAR-10.7B) | 59.34 | 55.38 | 65.56 | 53.38 | 64.39 | 57.97 |
| [yanolja/KoSOLAR-10.7B-v0.2](https://huggingface.co./yanolja/KoSOLAR-10.7B-v0.2) | 55.62 | 50.51 | 62.29 | 53.76 | 47.31 | 64.23 |
| [megastudyedu/M-SOLAR-10.7B-v1.3](https://huggingface.co./megastudyedu/M-SOLAR-10.7B-v1.3) | 56.64 | 51.37 | 60.93 | 54.91 | 48.45 | 67.53 |
# Implementation Code
```python
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "PracticeLLM/KoSOLAR-Platypus-10.7B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```