|
--- |
|
language: |
|
- ko |
|
datasets: |
|
- kyujinpy/KOR-OpenOrca-Platypus-v3 |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
|
|
# **⭐My custom LLM 13B⭐** |
|
|
|
## Model Details |
|
**Model Developers** |
|
- Kyujin Han (kyujinpy) |
|
|
|
**Model Architecture** |
|
- My custom LLM 13B is an auto-regressive language model based on the LLaMA2 transformer architecture. |
|
|
|
**Base Model** |
|
- [beomi/llama-2-koen-13b](https://huggingface.co./beomi/llama-2-koen-13b) |
|
|
|
**Training Dataset** |
|
- [kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3). |
|
|
|
--- |
|
# Model comparisons |
|
> Ko-LLM leaderboard(11/27; [link](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)) |
|
|
|
| Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | |
|
| --- | --- | --- | --- | --- | --- | --- | |
|
| ⭐My custom LLM 13B-v1⭐ | **50.19** | **45.99** | 56.93 | 41.78 | 41.66 | **64.58** | |
|
| ⭐My custom LLM 13B-v2⭐ | 48.28 | 45.73 | 56.97 | 38.77 | 38.75 | 61.16 | |
|
| **⭐My custom LLM 13B-v4⭐** | 49.89 | 45.05 | **57.06** | **41.83** | **42.93** | 62.57 | |
|
|
|
--- |
|
# Model comparisons2 |
|
> AI-Harness evaluation; [link](https://github.com/Beomi/ko-lm-evaluation-harness) |
|
|
|
| Model | Copa | Copa | HellaSwag | HellaSwag | BoolQ | BoolQ | Sentineg | Sentineg | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | --- | |
|
| | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | |
|
| ⭐My custom LLM 13B-v1⭐ | 0.7987 | 0.8269 | 0.4994 | 0.5660 | **0.3343** | 0.5060 | 0.6984 | 0.9723 | |
|
| ⭐My custom LLM 13B-v2⭐ | 0.7938 | 0.8209 | 0.4978 | 0.4893 | **0.3343** | 0.5614 | 0.6283 | 0.9773 | |
|
| **⭐My custom LLM 13B-v4⭐** | **0.7988** | 0.8279 | **0.4995** | 0.4953 | **0.3343** | 0.3558 | **0.7825** | 0.9698 | |
|
| [beomi/llama-2-koen-13b](https://huggingface.co./beomi/llama-2-koen-13b) | 0.7768 | 0.8128 | 0.4999 | 0.5127 | 0.3988 | 0.7038 | 0.5870 | 0.9748 | |
|
|
|
--- |
|
# Implementation Code |
|
```python |
|
### KO-Platypus |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
repo = "PracticeLLM/Custom-KoLLM-13B-v4" |
|
OpenOrca = AutoModelForCausalLM.from_pretrained( |
|
repo, |
|
return_dict=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
) |
|
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) |
|
``` |
|
|
|
--- |
|
# Hyperparameters |
|
- learning_rate: 4e-4 |
|
- batch_size: 16 |
|
- epoch: 1 |
|
- lora_target_modules: [gate_proj, down_proj, up_proj, q_proj, k_proj, v_proj, o_proj] |
|
- cutoff_len: 4096 |