StarMonarch-7B / README.md
Ppoyaa's picture
Update README.md
c0dda8e verified
---
tags:
- merge
- mergekit
- lazymergekit
base_model:
- mlabonne/AlphaMonarch-7B
- Nexusflow/Starling-LM-7B-beta
license: apache-2.0
language:
- en
---
# StarMonarch-7B
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f158693196560d34495d54/kY82CwYmaGSt2k3iWjOOZ.png)
# Description
StarMonarch-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/AlphaMonarch-7B](https://huggingface.co./mlabonne/AlphaMonarch-7B)
* [Nexusflow/Starling-LM-7B-beta](https://huggingface.co./Nexusflow/Starling-LM-7B-beta)
This model uses a context window of 8k. Special thanks to mlabonne and Nexusflow for the models.
## πŸ† Open LLM Leaderboard Evaluation Results
| Metric |Value|
|---------------------------------|----:|
|Avg. |74.45|
|AI2 Reasoning Challenge (25-Shot)|71.25|
|HellaSwag (10-Shot) |87.00|
|MMLU (5-Shot) |65.48|
|TruthfulQA (0-shot) |67.20|
|Winogrande (5-shot) |82.16|
|GSM8k (5-shot) |73.62|
## 🧩 Configuration
```yaml
slices:
- sources:
- model: mlabonne/AlphaMonarch-7B
layer_range: [0, 32]
- model: Nexusflow/Starling-LM-7B-beta
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/AlphaMonarch-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## πŸ’» Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Ppoyaa/StarMonarch-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```