|
|
|
|
|
|
|
|
|
seed: 1234 |
|
__set_seed: !apply:torch.manual_seed [1234] |
|
|
|
skip_training: True |
|
|
|
output_folder: output_folder_wavlm_base |
|
label_encoder_file: !ref <output_folder>/label_encoder.txt |
|
|
|
train_log: !ref <output_folder>/train_log.txt |
|
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger |
|
save_file: !ref <output_folder>/train_log.txt |
|
save_folder: !ref <output_folder>/save |
|
|
|
wav2vec2_hub: microsoft/wavlm-base-plus-sv |
|
|
|
wav2vec2_folder: !ref <save_folder>/wav2vec2_checkpoint |
|
|
|
|
|
sample_rate: 22050 |
|
new_sample_rate: 16000 |
|
window_size: 25 |
|
n_mfcc: 23 |
|
|
|
|
|
n_epochs: 28 |
|
stopping_factor: 10 |
|
|
|
dataloader_options: |
|
batch_size: 10 |
|
shuffle: false |
|
|
|
test_dataloader_options: |
|
batch_size: 1 |
|
shuffle: false |
|
|
|
lr: 0.0001 |
|
lr_wav2vec2: 0.00001 |
|
|
|
|
|
freeze_wav2vec2: False |
|
|
|
|
|
freeze_wav2vec2_conv: True |
|
|
|
label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder |
|
|
|
encoder_dims: 768 |
|
n_classes: 5 |
|
|
|
|
|
embedding_model: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2 |
|
source: !ref <wav2vec2_hub> |
|
output_norm: True |
|
freeze: !ref <freeze_wav2vec2> |
|
freeze_feature_extractor: !ref <freeze_wav2vec2_conv> |
|
save_path: !ref <wav2vec2_folder> |
|
output_all_hiddens: True |
|
|
|
|
|
avg_pool: !new:speechbrain.nnet.pooling.StatisticsPooling |
|
return_std: False |
|
|
|
|
|
classifier: !new:speechbrain.nnet.linear.Linear |
|
input_size: !ref <encoder_dims> |
|
n_neurons: !ref <n_classes> |
|
bias: False |
|
|
|
|
|
log_softmax: !new:speechbrain.nnet.activations.Softmax |
|
apply_log: True |
|
|
|
|
|
opt_class: !name:torch.optim.Adam |
|
lr: !ref <lr> |
|
|
|
|
|
wav2vec2_opt_class: !name:torch.optim.Adam |
|
lr: !ref <lr_wav2vec2> |
|
|
|
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter |
|
limit: !ref <n_epochs> |
|
|
|
|
|
accuracy_computer: !name:speechbrain.utils.Accuracy.AccuracyStats |
|
|
|
|
|
compute_cost: !name:speechbrain.nnet.losses.nll_loss |
|
|
|
|
|
error_stats: !name:speechbrain.utils.metric_stats.MetricStats |
|
metric: !name:speechbrain.nnet.losses.classification_error |
|
reduction: batch |
|
|
|
modules: |
|
wav2vec2: !ref <wav2vec2> |
|
label_lin: !ref <label_lin> |
|
|
|
|
|
model: !new:torch.nn.ModuleList |
|
- [!ref <label_lin>] |
|
|
|
|
|
lr_annealing: !new:speechbrain.nnet.schedulers.NewBobScheduler |
|
initial_value: !ref <lr> |
|
improvement_threshold: 0.0025 |
|
annealing_factor: 0.9 |
|
patient: 0 |
|
|
|
|
|
lr_annealing_wav2vec2: !new:speechbrain.nnet.schedulers.NewBobScheduler |
|
initial_value: !ref <lr_wav2vec2> |
|
improvement_threshold: 0.0025 |
|
annealing_factor: 0.9 |
|
|
|
|
|
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer |
|
checkpoints_dir: !ref <save_folder> |
|
recoverables: |
|
model: !ref <classifier> |
|
wav2vec2: !ref <embedding_model> |
|
lr_annealing_output: !ref <lr_annealing> |
|
lr_annealing_wav2vec2: !ref <lr_annealing_wav2vec2> |
|
counter: !ref <epoch_counter> |
|
|