# Generated 2022-01-19 from: # /scratch/elec/t405-puhe/p/porjazd1/Metadata_Classification/TCN/asr_topic_speechbrain/mgb_asr/hyperparams.yaml # yamllint disable # Seed needs to be set at top of yaml, before objects with parameters are made seed: 1234 __set_seed: !apply:torch.manual_seed [1234] skip_training: True output_folder: output_folder_wavlm_base label_encoder_file: !ref /label_encoder.txt train_log: !ref /train_log.txt train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger save_file: !ref /train_log.txt save_folder: !ref /save wav2vec2_hub: microsoft/wavlm-base-plus-sv wav2vec2_folder: !ref /wav2vec2_checkpoint # Feature parameters sample_rate: 22050 new_sample_rate: 16000 window_size: 25 n_mfcc: 23 # Training params n_epochs: 28 stopping_factor: 10 dataloader_options: batch_size: 10 shuffle: false test_dataloader_options: batch_size: 1 shuffle: false lr: 0.0001 lr_wav2vec2: 0.00001 #freeze all wav2vec2 freeze_wav2vec2: False #set to true to freeze the CONV part of the wav2vec2 model # We see an improvement of 2% with freezing CNNs freeze_wav2vec2_conv: True label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder encoder_dims: 768 n_classes: 5 # Wav2vec2 encoder embedding_model: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2 source: !ref output_norm: True freeze: !ref freeze_feature_extractor: !ref save_path: !ref output_all_hiddens: True avg_pool: !new:speechbrain.nnet.pooling.StatisticsPooling return_std: False classifier: !new:speechbrain.nnet.linear.Linear input_size: !ref n_neurons: !ref bias: False log_softmax: !new:speechbrain.nnet.activations.Softmax apply_log: True opt_class: !name:torch.optim.Adam lr: !ref wav2vec2_opt_class: !name:torch.optim.Adam lr: !ref epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter limit: !ref # Functions that compute the statistics to track during the validation step. accuracy_computer: !name:speechbrain.utils.Accuracy.AccuracyStats compute_cost: !name:speechbrain.nnet.losses.nll_loss error_stats: !name:speechbrain.utils.metric_stats.MetricStats metric: !name:speechbrain.nnet.losses.classification_error reduction: batch modules: wav2vec2: !ref label_lin: !ref model: !new:torch.nn.ModuleList - [!ref ] lr_annealing: !new:speechbrain.nnet.schedulers.NewBobScheduler initial_value: !ref improvement_threshold: 0.0025 annealing_factor: 0.9 patient: 0 lr_annealing_wav2vec2: !new:speechbrain.nnet.schedulers.NewBobScheduler initial_value: !ref improvement_threshold: 0.0025 annealing_factor: 0.9 checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer checkpoints_dir: !ref recoverables: model: !ref wav2vec2: !ref lr_annealing_output: !ref lr_annealing_wav2vec2: !ref counter: !ref