ner_model_ep_all
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3739
- allergy Name F1: 0.7755
- allergy Name Pres: 0.76
- allergy Name Rec: 0.7917
- cancer F1: 0.7389
- cancer Pres: 0.7283
- cancer Rec: 0.7497
- chronic Disease F1: 0.7778
- chronic Disease Pres: 0.7676
- chronic Disease Rec: 0.7882
- treatment F1: 0.7918
- treatmen Prest: 0.7837
- treatment Rec: 0.7999
- Over All Precision: 0.7698
- Over All Recall: 0.7887
- Over All F1: 0.7792
- Over All Accuracy: 0.8803
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | allergy Name F1 | allergy Name Pres | allergy Name Rec | cancer F1 | cancer Pres | cancer Rec | chronic Disease F1 | chronic Disease Pres | chronic Disease Rec | treatment F1 | treatmen Prest | treatment Rec | Over All Precision | Over All Recall | Over All F1 | Over All Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5174 | 1.0 | 1005 | 0.3949 | 0.7230 | 0.7710 | 0.6806 | 0.6254 | 0.6354 | 0.6158 | 0.6958 | 0.6914 | 0.7003 | 0.7376 | 0.7683 | 0.7093 | 0.7218 | 0.6925 | 0.7068 | 0.8570 |
0.3297 | 2.0 | 2010 | 0.3664 | 0.7746 | 0.7857 | 0.7639 | 0.7133 | 0.7171 | 0.7095 | 0.7509 | 0.7746 | 0.7287 | 0.7738 | 0.7834 | 0.7643 | 0.7711 | 0.7444 | 0.7576 | 0.8732 |
0.2691 | 3.0 | 3015 | 0.3585 | 0.7589 | 0.8364 | 0.6944 | 0.7415 | 0.7417 | 0.7412 | 0.7674 | 0.7754 | 0.7596 | 0.7819 | 0.7652 | 0.7994 | 0.7670 | 0.7748 | 0.7709 | 0.8780 |
0.2278 | 4.0 | 4020 | 0.3686 | 0.7717 | 0.7878 | 0.7562 | 0.7400 | 0.7170 | 0.7645 | 0.7762 | 0.7717 | 0.7807 | 0.7885 | 0.7604 | 0.8188 | 0.7588 | 0.7965 | 0.7772 | 0.8795 |
0.2038 | 5.0 | 5025 | 0.3739 | 0.7755 | 0.76 | 0.7917 | 0.7389 | 0.7283 | 0.7497 | 0.7778 | 0.7676 | 0.7882 | 0.7918 | 0.7837 | 0.7999 | 0.7698 | 0.7887 | 0.7792 | 0.8803 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Polo123/ner_model_ep_all
Base model
distilbert/distilbert-base-uncased