wav2vec2-large-xslr-commonvoice_jsut

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7420
  • Cer: 0.2028

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
5.7253 0.6785 400 5.6492 0.9999
3.9768 1.3571 800 4.1057 0.9999
2.5285 2.0356 1200 2.3752 0.5055
1.0454 2.7142 1600 1.0980 0.2638
0.899 3.3927 2000 0.9496 0.2414
0.7883 4.0712 2400 0.8826 0.2310
0.7827 4.7498 2800 0.8434 0.2251
0.948 5.4283 3200 0.8063 0.2185
0.6689 6.1069 3600 0.7827 0.2142
0.5936 6.7854 4000 0.7687 0.2090
0.6368 7.4640 4400 0.7568 0.2065
0.5886 8.1425 4800 0.7554 0.2053
0.5633 8.8210 5200 0.7444 0.2036
0.6811 9.4996 5600 0.7420 0.2028

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
16
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PlayMaker13/wav2vec2-large-xslr-commonvoice_jsut

Finetuned
(219)
this model