SolCoder / README.md
Pipper's picture
training latge t5 comment 2 code done 12/12/2023, 18:44:34
19b1121
|
raw
history blame
2.38 kB
---
license: apache-2.0
base_model: Pipper/SolCoder
tags:
- generated_from_trainer
model-index:
- name: SolCoder
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SolCoder
This model is a fine-tuned version of [Pipper/SolCoder](https://huggingface.co./Pipper/SolCoder) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5568
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 37
- eval_batch_size: 37
- seed: 100
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 148
- total_eval_batch_size: 148
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.6094 | 1.0 | 7440 | 0.6185 |
| 0.598 | 2.0 | 14880 | 0.6124 |
| 0.5845 | 3.0 | 22320 | 0.6075 |
| 0.5723 | 4.0 | 29760 | 0.6006 |
| 0.5589 | 5.0 | 37200 | 0.5943 |
| 0.5495 | 6.0 | 44640 | 0.5894 |
| 0.5371 | 7.0 | 52080 | 0.5861 |
| 0.5291 | 8.0 | 59520 | 0.5811 |
| 0.52 | 9.0 | 66960 | 0.5765 |
| 0.5095 | 10.0 | 74400 | 0.5746 |
| 0.5056 | 11.0 | 81840 | 0.5700 |
| 0.4967 | 12.0 | 89280 | 0.5682 |
| 0.4894 | 13.0 | 96720 | 0.5659 |
| 0.4861 | 14.0 | 104160 | 0.5619 |
| 0.4773 | 15.0 | 111600 | 0.5599 |
| 0.4754 | 16.0 | 119040 | 0.5599 |
| 0.4689 | 17.0 | 126480 | 0.5578 |
| 0.4642 | 18.0 | 133920 | 0.5575 |
| 0.4627 | 19.0 | 141360 | 0.5566 |
| 0.4573 | 20.0 | 148800 | 0.5568 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.1.0+cu121
- Datasets 2.11.0
- Tokenizers 0.13.3