File size: 2,521 Bytes
5a5afa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- eur-lex-sum
metrics:
- rouge
model-index:
- name: T5_small_eurlexsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: eur-lex-sum
      type: eur-lex-sum
      config: french
      split: test
      args: french
    metrics:
    - name: Rouge1
      type: rouge
      value: 0.2288
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# T5_small_eurlexsum

This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on the eur-lex-sum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9360
- Rouge1: 0.2288
- Rouge2: 0.1816
- Rougel: 0.2157
- Rougelsum: 0.2158
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 71   | 1.4482          | 0.1743 | 0.0982 | 0.1509 | 0.1511    | 19.0    |
| No log        | 2.0   | 142  | 1.1661          | 0.193  | 0.1257 | 0.1731 | 0.1734    | 19.0    |
| No log        | 3.0   | 213  | 1.0651          | 0.2072 | 0.1483 | 0.1892 | 0.1896    | 19.0    |
| No log        | 4.0   | 284  | 1.0053          | 0.2167 | 0.1638 | 0.2017 | 0.2019    | 19.0    |
| No log        | 5.0   | 355  | 0.9706          | 0.222  | 0.1731 | 0.2082 | 0.2079    | 19.0    |
| No log        | 6.0   | 426  | 0.9510          | 0.2253 | 0.1771 | 0.2114 | 0.2114    | 19.0    |
| No log        | 7.0   | 497  | 0.9393          | 0.2263 | 0.1785 | 0.2134 | 0.2133    | 19.0    |
| 1.4549        | 8.0   | 568  | 0.9360          | 0.2288 | 0.1816 | 0.2157 | 0.2158    | 19.0    |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3