T5_small_eurlexsum
This model is a fine-tuned version of t5-small on the eur-lex-sum dataset. It achieves the following results on the evaluation set:
- Loss: 0.9360
- Rouge1: 0.2288
- Rouge2: 0.1816
- Rougel: 0.2157
- Rougelsum: 0.2158
- Gen Len: 19.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 71 | 1.4482 | 0.1743 | 0.0982 | 0.1509 | 0.1511 | 19.0 |
No log | 2.0 | 142 | 1.1661 | 0.193 | 0.1257 | 0.1731 | 0.1734 | 19.0 |
No log | 3.0 | 213 | 1.0651 | 0.2072 | 0.1483 | 0.1892 | 0.1896 | 19.0 |
No log | 4.0 | 284 | 1.0053 | 0.2167 | 0.1638 | 0.2017 | 0.2019 | 19.0 |
No log | 5.0 | 355 | 0.9706 | 0.222 | 0.1731 | 0.2082 | 0.2079 | 19.0 |
No log | 6.0 | 426 | 0.9510 | 0.2253 | 0.1771 | 0.2114 | 0.2114 | 19.0 |
No log | 7.0 | 497 | 0.9393 | 0.2263 | 0.1785 | 0.2134 | 0.2133 | 19.0 |
1.4549 | 8.0 | 568 | 0.9360 | 0.2288 | 0.1816 | 0.2157 | 0.2158 | 19.0 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Pierre-Arthur/T5_small_eurlexsum_8Epochs
Base model
google-t5/t5-small