Pablo94's picture
End of training
2b8d47d verified
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: xlm-roberta-base-finetuned-detests-wandb24
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-detests-wandb24
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co./xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4371
- Accuracy: 0.7938
- F1-score: 0.7241
- Precision: 0.7136
- Recall: 0.7396
- Auc: 0.7396
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|:------:|
| 0.458 | 1.0 | 153 | 0.4512 | 0.7725 | 0.4358 | 0.3863 | 0.5 | 0.5 |
| 0.4262 | 2.0 | 306 | 0.4371 | 0.7938 | 0.7241 | 0.7136 | 0.7396 | 0.7396 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1