π¦ Llama3.1-8b-instruct-vision Model Card
Model Details
This repository contains a reproduced version of the LLaVA model from the Llama 3.1-8B-Instruct foundation model using the PKU-Alignment/align-anything library.
NOTE: The reproduced version of LLaVA has some different implementation details than the original LLaVA model.
- The reproduced LLaVA uses a different conversation template than the original LLaVA model.
- The initial model weights are loaded from Llama 3.1 8B Instruct model (meta-llama/Llama 3.1-8B-Instruct) rather than lmsys/vicuna-7b-v1.5.
- Developed by: the PKU-Alignment Team.
- Model Type: An auto-regressive language model based on the transformer architecture.
- License: Non-commercial license.
- Fine-tuned from model: meta-llama/Llama 3.1-8B-Instruct.
Model Sources
- Repository: https://github.com/PKU-Alignment/align-anything
- Dataset:
- https://huggingface.co./datasets/liuhaotian/LLaVA-Instruct-150K
- https://huggingface.co./datasets/OpenGVLab/ShareGPT-4o
- https://huggingface.co./datasets/HuggingFaceM4/A-OKVQA
- https://huggingface.co./datasets/Multimodal-Fatima/OK-VQA_train
- https://huggingface.co./datasets/howard-hou/OCR-VQA
- https://huggingface.co./datasets/HuggingFaceM4/VQAv2
How to use model (reprod.)
- Using transformers
from transformers import (
LlavaForConditionalGeneration,
AutoProcessor,
)
from PIL import Image
path = <path_to_model_dir>
processor = AutoProcessor.from_pretrained(path)
model = LlavaForConditionalGeneration.from_pretrained(path)
prompt = "<|start_header_id|>user<|end_header_id|>: <image> Give an overview of what's in the image.\n<|start_header_id|>assistant<|end_header_id|>: "
image_path = "align-anything/assets/test_image.webp"
image = Image.open(image_path)
inputs = processor(text=prompt, images=image, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=1024)
print(processor.decode(outputs[0], skip_special_tokens=True))
- Downloads last month
- 4
Model tree for PKU-Alignment/llama3.1-8b-instruct-vision
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct