Example Code Doesn't Work

#1
by evanfrick - opened

Hi,

I'm trying to run the model, however it seems that safe_rlhf.models can't be imported.
I've tried running pip install safe_rlhf as well as installing it directly from the Github link.
Note that safe_rlhf by itself can import, but doesn't have a models attribute.

Is there an updated example code block to run this model?

Thanks!

@evanfrick , I made a solution on my own that is a standalone file, if you want to use it. See the pipeline at the bottom too.

# Copyright 2023 AllenAI. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Mostly copied from:
# https://github.com/PKU-Alignment/safe-rlhf/blob/main/safe_rlhf/models/score_model/llama/modeling_llama.py
# https://github.com/PKU-Alignment/safe-rlhf/blob/main/safe_rlhf/models/score_model/__init__.py
# https://github.com/PKU-Alignment/safe-rlhf/blob/main/safe_rlhf/models/normalizer.py

from abc import abstractmethod
from dataclasses import dataclass
from typing import Any, ClassVar, Literal

import torch
import torch.nn as nn
from fastchat.conversation import Conversation, SeparatorStyle, register_conv_template
from torch import distributed as dist
from torch.types import Number
from transformers import (
    LlamaModel,
    LlamaPreTrainedModel,
    PretrainedConfig,
    PreTrainedModel,
)
from transformers.models.llama.modeling_llama import (
    _CONFIG_FOR_DOC,
    LLAMA_INPUTS_DOCSTRING,
)
from transformers.utils.doc import (
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
from transformers.utils.generic import ModelOutput

# UltraLM / UltraRM Chat Template
# Reference1: https://huggingface.co./openbmb/UltraLM-65b
# Reference2: https://huggingface.co./openbmb/UltraRM-13b
register_conv_template(
    Conversation(
        name="pku-align",
        system_message="BEGINNING OF CONVERSATION:",
        roles=("USER", "ASSISTANT"),
        sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
        sep=" ",
    )
)


NormalizeFunction = Literal["affine", "scale", "translate", "identity"]
NormalizerType = Literal["RunningMeanStd", "ExponentialMovingAverage"]


class Normalizer(nn.Module):
    """Normalize input to have zero mean and unit variance."""

    mean: torch.Tensor
    var: torch.Tensor
    count: torch.LongTensor
    normalize_function: NormalizeFunction

    def __init__(
        self,
        normalize_function: NormalizeFunction,
        shape: tuple[int, ...],
        device: torch.device | str | None = None,
    ) -> None:
        """Initialize."""
        super().__init__()
        if normalize_function not in {"affine", "scale", "translate", "identity"}:
            raise ValueError(
                f"Invalid normalization function type: {normalize_function}. ",
                'Expected one of "affine", "scale", "translate", "identity".',
            )
        self.normalize_function = normalize_function
        self.register_buffer("mean", torch.zeros(shape, device=device))
        self.register_buffer("var", torch.ones(shape, device=device))
        self.register_buffer("count", torch.zeros(1, dtype=torch.long, device=device))

    @abstractmethod
    def update(self, data: torch.Tensor) -> None:
        """Update mean and variance."""
        raise NotImplementedError

    @property
    def std(self) -> torch.Tensor:
        """Return standard deviation."""
        return self.var.sqrt()

    def set_mean_var(
        self,
        mean: torch.Tensor | list[float] | tuple[float, ...] | None,
        var: torch.Tensor | list[float] | tuple[float, ...] | None,
    ) -> None:
        """Set mean and variance."""
        mean = torch.as_tensor(mean, dtype=self.mean.dtype, device=self.mean.device) if mean is not None else self.mean
        var = torch.as_tensor(var, dtype=self.var.dtype, device=self.var.device) if var is not None else self.var

        assert mean.shape == self.mean.shape
        assert var.shape == self.var.shape

        self.mean = mean
        self.var = var

    def forward(
        self,
        data: torch.Tensor,
        epsilon: Number = 1e-8,
    ) -> torch.Tensor:
        """Update and normalize input."""
        if self.training:
            self.update(data)
        return self.normalize(data, epsilon=epsilon)

    def normalize(
        self,
        data: torch.Tensor,
        epsilon: Number = 1e-8,
    ) -> torch.Tensor:
        """Normalize input."""
        if self.normalize_function == "affine":
            return (data - self.mean.detach()) / (self.std.detach() + epsilon)
        if self.normalize_function == "scale":
            return data / (self.std.detach() + epsilon)
        if self.normalize_function == "translate":
            return data - self.mean.detach()
        if self.normalize_function == "identity":
            return data
        raise ValueError(
            f"Invalid normalization function type: {self.normalize_function}. ",
            'Expected one of "affine", "scale", "translate", "identity".',
        )

    @classmethod
    def instantiate(
        cls,
        normalizer_type: NormalizerType | None,
        normalize_function: NormalizeFunction,
        shape: tuple[int, ...],
        device: torch.device | str | None = None,
        **kwargs: Any,
    ):
        """Get a normalizer."""
        if normalizer_type == "RunningMeanStd":
            return RunningMeanStd(
                normalize_function,
                shape=shape,
                device=device,
            )
        if normalizer_type == "ExponentialMovingAverage":
            return ExponentialMovingAverage(
                normalize_function,
                shape=shape,
                device=device,
                **kwargs,
            )
        if normalizer_type is None:
            return IdentityNormalizer(
                normalize_function,
                shape=shape,
                device=device,
            )
        raise ValueError(
            f"Invalid normalization function type: {normalizer_type}. "
            'Expected one of "RunningMeanStd", "ExponentialMovingAverage".',
        )


@dataclass
class ScoreModelOutput(ModelOutput):
    """
    Output of the score model.

    Args:
        scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, score_dim)`):
            Prediction scores of the score model.
        end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, score_dim)`):
            Prediction scores of the end of the sequence.
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_dim)`):
            Sequence of hidden-states at the output of the last layer of the model.
        end_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_dim)`):
            Last hidden state of the sequence at the output of the last layer of the model.
        end_index (`torch.LongTensor` of shape `(batch_size,)`):
            Indices of the end of the sequence.
    """

    scores: torch.FloatTensor | None = None  # size = (B, L, D)
    end_scores: torch.FloatTensor | None = None  # size = (B, D)
    last_hidden_state: torch.FloatTensor | None = None  # size = (B, L, E)
    end_last_hidden_state: torch.FloatTensor | None = None  # size = (B, E)
    end_index: torch.LongTensor | None = None  # size = (B,)


class RunningMeanStd(Normalizer):
    """Running mean and standard deviation."""

    def update(self, data: torch.Tensor) -> None:
        """Update mean and variance."""
        batch_mean = data.mean(dim=0)
        batch_var = data.var(dim=0)
        batch_count = data.size(0)

        delta = batch_mean - self.mean
        total_count = self.count + batch_count

        new_mean = self.mean + delta * batch_count / total_count
        m_a = self.var * self.count
        m_b = batch_var * batch_count
        m2 = m_a + m_b + torch.square(delta) * (self.count * batch_count / total_count)  # pylint: disable=invalid-name
        new_var = m2 / total_count

        self.mean = new_mean
        self.var = new_var
        self.count = total_count


class ExponentialMovingAverage(Normalizer):
    """Exponential moving average."""

    def __init__(
        self,
        normalize_function: NormalizeFunction,
        shape: tuple[int, ...],
        device: torch.device | str | None = None,
        momentum: float = 0.9,
    ) -> None:
        super().__init__(normalize_function, shape=shape, device=device)
        self.momentum = momentum

    def update(self, data: torch.Tensor) -> None:
        """Update mean and variance."""
        batch_mean = data.mean(dim=0)
        batch_var = data.var(dim=0)
        batch_count = data.size(0)

        self.mean = self.momentum * self.mean + (1.0 - self.momentum) * batch_mean
        self.var = self.momentum * self.var + (1.0 - self.momentum) * batch_var
        self.count += batch_count  # pylint: disable=no-member


class IdentityNormalizer(Normalizer):
    """Identity normalizer."""

    def update(self, data: torch.Tensor) -> None:
        """Update mean and variance."""
        self.count += data.size(0)  # pylint: disable=no-member


class ScoreModelMixin:
    """Base class for score models."""

    score_head: nn.Linear
    normalizer: Normalizer
    do_normalize: bool = False
    normalize_function: NormalizeFunction = "affine"
    _is_score_head_initialized: bool = False

    def init_score_head(self, config: PretrainedConfig, hidden_size: int, **kwargs: Any) -> None:
        """Initialize the score head."""
        if self._is_score_head_initialized:
            return

        config.score_dim = kwargs.pop("score_dim", getattr(config, "score_dim", 1))
        config.bias = kwargs.pop("bias", getattr(config, "bias", False))

        config.score_type = kwargs.pop("score_type", getattr(config, "score_type", "reward"))
        if config.score_type == "reward":
            self.normalize_function = "affine"
        elif config.score_type == "cost":
            self.normalize_function = "scale"
        elif config.score_type == "critic":
            self.normalize_function = "identity"
        else:
            raise ValueError(
                f"Invalid score type: {config.score_type}. Expected one of 'reward', 'cost', or 'critic'.",
            )

        config.do_normalize = kwargs.pop(
            "do_normalize",
            getattr(config, "do_normalize", False),
        )
        self.do_normalize = config.do_normalize

        config.normalizer_type = kwargs.pop(
            "normalizer_type",
            getattr(config, "normalizer_type", None),
        )
        if config.normalizer_type not in {"RunningMeanStd", "ExponentialMovingAverage", None}:
            raise ValueError(
                f"Invalid norm type: {config.normalizer_type}."
                "Expected one of 'RunningMeadStd', 'ExponentialMovingAverage', or None.",
            )
        if config.normalizer_type == "ExponentialMovingAverage":
            config.momentum = kwargs.pop("momentum", getattr(config, "momentum", None))
        momentum = getattr(config, "momentum", None)

        self.score_head = nn.Linear(hidden_size, config.score_dim, bias=config.bias)
        self.normalizer = Normalizer.instantiate(
            normalizer_type=config.normalizer_type,
            normalize_function=self.normalize_function,
            shape=(config.score_dim,),
            momentum=momentum,
        )

        mean = getattr(config, "mean", None)
        var = getattr(config, "var", None)
        self.normalizer.set_mean_var(mean, var)

        self._is_score_head_initialized = True

    def get_scores(
        self,
        last_hidden_state: torch.FloatTensor,  # size = (B, L, E)
        attention_mask: torch.BoolTensor | None = None,  # size = (B, L)
        return_dict: bool | None = None,
    ) -> tuple[torch.Tensor, torch.Tensor] | ScoreModelOutput:
        """Forward pass of the score model."""
        B, L, E = last_hidden_state.size()

        if attention_mask is None:
            if B > 1:
                raise ValueError("'attention_mask' is required when batch size > 1.")
            attention_mask = last_hidden_state.new_ones(B, L, dtype=torch.bool)  # size = (B, L)

        scores = self.score_head(last_hidden_state).float()  # size = (B, L, D)

        end_index = torch.cat([m.nonzero()[-1] for m in attention_mask])  # size = (B,)
        end_last_hidden_state = torch.gather(  # size = (B, 1, E)
            last_hidden_state,
            dim=1,
            index=(
                end_index.to(last_hidden_state.device)
                .unsqueeze(dim=1)
                .unsqueeze(dim=2)
                .expand(-1, -1, last_hidden_state.size(-1))
            ),
        )
        end_scores = torch.gather(  # size = (B, 1, D)
            scores,
            dim=1,
            index=(end_index.to(scores.device).unsqueeze(dim=1).unsqueeze(dim=2).expand(-1, -1, scores.size(-1))),
        )
        end_last_hidden_state = end_last_hidden_state.squeeze(dim=1)  # size = (B, E)
        end_scores = end_scores.squeeze(dim=1)  # size = (B, D)

        if self.training:
            if dist.is_initialized():
                gathered_end_scores_list = [torch.zeros_like(end_scores) for _ in range(dist.get_world_size())]
                dist.all_gather(gathered_end_scores_list, end_scores)
                gathered_end_scores = torch.cat(gathered_end_scores_list, dim=0)
                self.normalizer.update(gathered_end_scores)
            else:
                self.normalizer.update(end_scores)
            self.config.mean = self.normalizer.mean.tolist()
            self.config.var = self.normalizer.var.tolist()

        if self.do_normalize:
            scores = self.normalizer.normalize(scores)
            end_scores = self.normalizer.normalize(end_scores)

        if not return_dict:
            return scores, end_scores

        return ScoreModelOutput(
            scores=scores,  # size = (B, L, D)
            end_scores=end_scores,  # size = (B, D)
            last_hidden_state=last_hidden_state,  # size = (B, L, E)
            end_last_hidden_state=end_last_hidden_state,  # size = (B, E)
            end_index=end_index,  # size = (B,)
        )

    def set_normalize(self, mode: bool = True) -> None:
        if self.do_normalize == mode:
            return

        self.do_normalize = self.config.do_normalize = mode


class LlamaForScore(ScoreModelMixin, LlamaPreTrainedModel):
    _keys_to_ignore_on_load_missing: ClassVar[list[str]] = ["lm_head.weight"]

    def __init__(self, config: PretrainedConfig, **kwargs: Any) -> None:
        super().__init__(config)
        self.model = LlamaModel(config)

        config.architectures = [self.__class__.__name__]
        self.init_score_head(config, hidden_size=config.hidden_size, **kwargs)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

    def set_input_embeddings(self, value: nn.Embedding) -> None:
        self.model.embed_tokens = value

    def get_output_embeddings(self) -> None:
        return None

    def set_decoder(self, decoder: PreTrainedModel) -> None:
        self.model = decoder

    def get_decoder(self) -> PreTrainedModel:
        return self.model

    @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=ScoreModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(  # pylint: disable=too-many-arguments
        self,
        input_ids: torch.LongTensor | None = None,
        attention_mask: torch.Tensor | None = None,
        position_ids: torch.LongTensor | None = None,
        past_key_values: tuple[torch.FloatTensor] | None = None,
        inputs_embeds: torch.FloatTensor | None = None,
        use_cache: bool | None = None,
        return_dict: bool | None = None,
    ) -> tuple[torch.Tensor, torch.Tensor] | ScoreModelOutput:
        """
        Args:

        Returns:

        Examples:

        ```python
        >>> from safe_rlhf.models.score_model.llama.modeling_llama import LlamaForScore
        >>> from transformers import LlamaTokenizer

        >>> model = LlamaForScore.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        # get score
        >>> outputs = model(**inputs)
        >>> end_scores = outputs.end_scores
        >>> end_scores
        tensor([[0.0000]])
        ```
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
        )
        last_hidden_state = outputs.last_hidden_state  # size = (B, L, E)
        return self.get_scores(
            last_hidden_state,
            attention_mask=attention_mask,
            return_dict=return_dict,
        )


# Pipeline addition
class BeaverPipeline:
    # init loads task, tokenizer and model
    def __init__(self, task, model, tokenizer):
        self.task = task
        self.model = model
        self.tokenizer = tokenizer

    def __call__(self, samples, **kwargs):
        _ = kwargs.get("batch_size", 1)
        truncation = kwargs.get("truncation", True)
        padding = kwargs.get("padding", True)
        max_length = kwargs.get("max_length", 2048)
        inputs = self.tokenizer(
            samples,
            truncation=truncation,
            max_length=max_length,
            padding=padding,
            return_tensors="pt",
        ).to("cuda")
        with torch.no_grad():
            outputs = self.model(**inputs)
        return outputs.end_scores

Amazing, thank you!

Sign up or log in to comment