|
--- |
|
datasets: |
|
- PKU-Alignment/PKU-SafeRLHF |
|
language: |
|
- en |
|
tags: |
|
- reinforcement-learning-from-human-feedback |
|
- reinforcement-learning |
|
- beaver |
|
- safety |
|
- llama |
|
- ai-safety |
|
- deepspeed |
|
- rlhf |
|
- alpaca |
|
library_name: safe-rlhf |
|
--- |
|
|
|
# 🦫 Beaver's Reward Model |
|
|
|
## Model Details |
|
|
|
The Beaver reward model is a preference model trained using the [PKU-SafeRLHF](https://huggingface.co./datasets/PKU-Alignment/PKU-SafeRLHF) dataset. |
|
It can play a role in the safe RLHF algorithm, helping the Beaver model become more helpful. |
|
|
|
- **Developed by:** the [PKU-Alignment](https://github.com/PKU-Alignment) Team. |
|
- **Model Type:** An auto-regressive language model based on the transformer architecture. |
|
- **License:** Non-commercial license. |
|
- **Fine-tuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca). |
|
|
|
## Model Sources |
|
|
|
- **Repository:** <https://github.com/PKU-Alignment/safe-rlhf> |
|
- **Beaver:** <https://huggingface.co./PKU-Alignment/beaver-7b-v3.0> |
|
- **Dataset:** <https://huggingface.co./datasets/PKU-Alignment/PKU-SafeRLHF> |
|
- **Reward Model:** <https://huggingface.co./PKU-Alignment/beaver-7b-unified-reward> |
|
- **Cost Model:** <https://huggingface.co./PKU-Alignment/beaver-7b-unified-cost> |
|
- **Dataset Paper:** <https://arxiv.org/abs/2307.04657> |
|
- **Paper:** <https://arxiv.org/abs/2310.12773> |
|
|
|
## How to Use the Reward Model |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer |
|
from safe_rlhf.models import AutoModelForScore |
|
|
|
model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-unified-reward', torch_dtype=torch.bfloat16, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-unified-reward') |
|
|
|
input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?' |
|
|
|
input_ids = tokenizer(input, return_tensors='pt') |
|
output = model(**input_ids) |
|
print(output) |
|
|
|
# ScoreModelOutput( |
|
# scores=tensor([[[-7.2812], |
|
# [-0.8203], |
|
# [-0.3535], |
|
# [-0.5781], |
|
# [-0.5781], |
|
# [-1.2578], |
|
# [-2.9219], |
|
# [-2.8594], |
|
# [-2.0469], |
|
# [-0.8789], |
|
# [-1.2422], |
|
# [-1.5312], |
|
# [-0.7500], |
|
# [-1.4688], |
|
# [-0.9141], |
|
# [-1.0469], |
|
# [-1.2266], |
|
# [-1.4062], |
|
# [-1.4297], |
|
# [-1.1016], |
|
# [-0.9688], |
|
# [ 0.5977], |
|
# [ 0.6211], |
|
# [ 0.4238], |
|
# [ 0.8906], |
|
# [ 0.4277], |
|
# [ 0.6680], |
|
# [ 0.3789]]], grad_fn=<ToCopyBackward0>), |
|
# end_scores=tensor([[0.3789]], grad_fn=<ToCopyBackward0>), |
|
# last_hidden_state=tensor([[[-0.0552, -0.3203, -0.9180, ..., 0.1719, 0.1309, 0.2988], |
|
# [-1.9609, -0.2617, -0.7227, ..., 0.3535, 0.8945, 1.6719], |
|
# [-1.1016, -0.3984, -0.3398, ..., 0.5820, 0.9062, 1.6172], |
|
# ..., |
|
# [-0.4844, 0.1387, -0.6562, ..., 0.3789, 0.2910, 1.5625], |
|
# [-0.3125, 0.0811, -0.7969, ..., 0.4688, 0.2344, 1.4453], |
|
# [-0.7148, -0.2139, -0.4336, ..., 0.9219, -0.1050, 1.3594]]], |
|
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>), |
|
# end_last_hidden_state=tensor([[-0.7148, -0.2139, -0.4336, ..., 0.9219, -0.1050, 1.3594]], |
|
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>), |
|
# end_index=tensor([27]) |
|
# ) |
|
``` |
|
|