|
--- |
|
datasets: |
|
- PKU-Alignment/PKU-SafeRLHF |
|
language: |
|
- en |
|
tags: |
|
- reinforcement-learning-from-human-feedback |
|
- reinforcement-learning |
|
- beaver |
|
- safety |
|
- llama |
|
- ai-safety |
|
- deepspeed |
|
- rlhf |
|
- alpaca |
|
library_name: safe-rlhf |
|
--- |
|
|
|
# 🦫 Beaver's Cost Model |
|
|
|
## Model Details |
|
|
|
The Beaver cost model is a preference model trained using the [PKU-SafeRLHF](https://huggingface.co./datasets/PKU-Alignment/PKU-SafeRLHF) dataset. |
|
It can play a role in the safe RLHF algorithm, helping the Beaver model become more safe and harmless. |
|
|
|
- **Developed by:** the [PKU-Alignment](https://github.com/PKU-Alignment) Team. |
|
- **Model Type:** An auto-regressive language model based on the transformer architecture. |
|
- **License:** Non-commercial license. |
|
- **Fine-tuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca). |
|
|
|
## Model Sources |
|
|
|
- **Repository:** <https://github.com/PKU-Alignment/safe-rlhf> |
|
- **Beaver:** <https://huggingface.co./PKU-Alignment/beaver-7b-v3.0> |
|
- **Dataset:** <https://huggingface.co./datasets/PKU-Alignment/PKU-SafeRLHF> |
|
- **Reward Model:** <https://huggingface.co./PKU-Alignment/beaver-7b-unified-reward> |
|
- **Cost Model:** <https://huggingface.co./PKU-Alignment/beaver-7b-unified-cost> |
|
- **Dataset Paper:** <https://arxiv.org/abs/2307.04657> |
|
- **Paper:** <https://arxiv.org/abs/2310.12773> |
|
|
|
## How to Use the Cost Model |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer |
|
from safe_rlhf.models import AutoModelForScore |
|
|
|
model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-unified-cost', torch_dtype=torch.bfloat16, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-unified-cost') |
|
|
|
input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?' |
|
|
|
input_ids = tokenizer(input, return_tensors='pt') |
|
output = model(**input_ids) |
|
print(output) |
|
|
|
# ScoreModelOutput( |
|
# scores=tensor([[[-2.7656], |
|
# [ 0.8320], |
|
# [-2.7656], |
|
# [-2.7500], |
|
# [-0.9023], |
|
# [-0.7891], |
|
# [-0.3125], |
|
# [-0.8008], |
|
# [-0.5117], |
|
# [-1.1562], |
|
# [-2.3906], |
|
# [-1.2266], |
|
# [-1.1797], |
|
# [-3.3281], |
|
# [-4.4062], |
|
# [-1.0234], |
|
# [-1.1484], |
|
# [-2.1406], |
|
# [-2.9531], |
|
# [-4.6250], |
|
# [-4.5312], |
|
# [-3.3594], |
|
# [-4.1250], |
|
# [-3.0156], |
|
# [-3.5156], |
|
# [-5.0000], |
|
# [-5.7812], |
|
# [-7.6562]]], grad_fn=<ToCopyBackward0>), |
|
# end_scores=tensor([[-7.6562]], grad_fn=<ToCopyBackward0>), |
|
# last_hidden_state=tensor([[[ 0.7148, 0.3594, -1.0234, ..., 0.5039, -0.0737, 1.4375], |
|
# [ 1.0781, -1.2812, 1.5078, ..., 0.9102, 1.3594, 1.4141], |
|
# [ 0.8047, 0.4551, -0.3262, ..., 0.3887, 0.6484, -0.4629], |
|
# ..., |
|
# [-0.1836, -0.6094, -0.8086, ..., -0.5078, 0.8086, 1.1719], |
|
# [ 0.9727, -1.5156, -1.2656, ..., -0.9766, 0.3535, 1.0156], |
|
# [ 4.2812, -1.6797, -0.4238, ..., 0.6758, -1.1875, -1.1562]]], |
|
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>), |
|
# end_last_hidden_state=tensor([[ 4.2812, -1.6797, -0.4238, ..., 0.6758, -1.1875, -1.1562]], |
|
# dtype=torch.bfloat16, grad_fn=<ToCopyBackward0>), |
|
# end_index=tensor([27]) |
|
# ) |
|
``` |
|
|