OrlikB's picture
Update README.md
5590a0e verified
metadata
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
  - mteb
license: lgpl
language:
  - pl
pipeline_tag: sentence-similarity
model-index:
  - name: st-polish-kartonberta-base-alpha-v1
    results:
      - task:
          type: Clustering
        dataset:
          type: PL-MTEB/8tags-clustering
          name: MTEB 8TagsClustering
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 32.85180358455615
      - task:
          type: Classification
        dataset:
          type: PL-MTEB/allegro-reviews
          name: MTEB AllegroReviews
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 40.188866799204774
          - type: f1
            value: 34.71127012684797
      - task:
          type: Retrieval
        dataset:
          type: arguana-pl
          name: MTEB ArguAna-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 30.939
          - type: map_at_10
            value: 47.467999999999996
          - type: map_at_100
            value: 48.303000000000004
          - type: map_at_1000
            value: 48.308
          - type: map_at_3
            value: 43.22
          - type: map_at_5
            value: 45.616
          - type: mrr_at_1
            value: 31.863000000000003
          - type: mrr_at_10
            value: 47.829
          - type: mrr_at_100
            value: 48.664
          - type: mrr_at_1000
            value: 48.67
          - type: mrr_at_3
            value: 43.492
          - type: mrr_at_5
            value: 46.006
          - type: ndcg_at_1
            value: 30.939
          - type: ndcg_at_10
            value: 56.058
          - type: ndcg_at_100
            value: 59.562000000000005
          - type: ndcg_at_1000
            value: 59.69799999999999
          - type: ndcg_at_3
            value: 47.260000000000005
          - type: ndcg_at_5
            value: 51.587
          - type: precision_at_1
            value: 30.939
          - type: precision_at_10
            value: 8.329
          - type: precision_at_100
            value: 0.984
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 19.654
          - type: precision_at_5
            value: 13.898
          - type: recall_at_1
            value: 30.939
          - type: recall_at_10
            value: 83.286
          - type: recall_at_100
            value: 98.43499999999999
          - type: recall_at_1000
            value: 99.502
          - type: recall_at_3
            value: 58.962
          - type: recall_at_5
            value: 69.488
      - task:
          type: Classification
        dataset:
          type: PL-MTEB/cbd
          name: MTEB CBD
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 67.69000000000001
          - type: ap
            value: 21.078799692467182
          - type: f1
            value: 56.80107173953953
      - task:
          type: PairClassification
        dataset:
          type: PL-MTEB/cdsce-pairclassification
          name: MTEB CDSC-E
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 89.2
          - type: cos_sim_ap
            value: 79.11674608786898
          - type: cos_sim_f1
            value: 68.83468834688347
          - type: cos_sim_precision
            value: 70.94972067039106
          - type: cos_sim_recall
            value: 66.84210526315789
          - type: dot_accuracy
            value: 89.2
          - type: dot_ap
            value: 79.11674608786898
          - type: dot_f1
            value: 68.83468834688347
          - type: dot_precision
            value: 70.94972067039106
          - type: dot_recall
            value: 66.84210526315789
          - type: euclidean_accuracy
            value: 89.2
          - type: euclidean_ap
            value: 79.11674608786898
          - type: euclidean_f1
            value: 68.83468834688347
          - type: euclidean_precision
            value: 70.94972067039106
          - type: euclidean_recall
            value: 66.84210526315789
          - type: manhattan_accuracy
            value: 89.1
          - type: manhattan_ap
            value: 79.1220443374692
          - type: manhattan_f1
            value: 69.02173913043478
          - type: manhattan_precision
            value: 71.34831460674157
          - type: manhattan_recall
            value: 66.84210526315789
          - type: max_accuracy
            value: 89.2
          - type: max_ap
            value: 79.1220443374692
          - type: max_f1
            value: 69.02173913043478
      - task:
          type: STS
        dataset:
          type: PL-MTEB/cdscr-sts
          name: MTEB CDSC-R
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 91.41534744278998
          - type: cos_sim_spearman
            value: 92.12681551821147
          - type: euclidean_pearson
            value: 91.74369794485992
          - type: euclidean_spearman
            value: 92.12685848456046
          - type: manhattan_pearson
            value: 91.66651938751657
          - type: manhattan_spearman
            value: 92.057603126734
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-pl
          name: MTEB DBPedia-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.8709999999999996
          - type: map_at_10
            value: 12.486
          - type: map_at_100
            value: 16.897000000000002
          - type: map_at_1000
            value: 18.056
          - type: map_at_3
            value: 8.958
          - type: map_at_5
            value: 10.57
          - type: mrr_at_1
            value: 44
          - type: mrr_at_10
            value: 53.830999999999996
          - type: mrr_at_100
            value: 54.54
          - type: mrr_at_1000
            value: 54.568000000000005
          - type: mrr_at_3
            value: 51.87500000000001
          - type: mrr_at_5
            value: 53.113
          - type: ndcg_at_1
            value: 34.625
          - type: ndcg_at_10
            value: 26.996
          - type: ndcg_at_100
            value: 31.052999999999997
          - type: ndcg_at_1000
            value: 38.208
          - type: ndcg_at_3
            value: 29.471000000000004
          - type: ndcg_at_5
            value: 28.364
          - type: precision_at_1
            value: 44
          - type: precision_at_10
            value: 21.45
          - type: precision_at_100
            value: 6.837
          - type: precision_at_1000
            value: 1.6019999999999999
          - type: precision_at_3
            value: 32.333
          - type: precision_at_5
            value: 27.800000000000004
          - type: recall_at_1
            value: 5.8709999999999996
          - type: recall_at_10
            value: 17.318
          - type: recall_at_100
            value: 36.854
          - type: recall_at_1000
            value: 60.468999999999994
          - type: recall_at_3
            value: 10.213999999999999
          - type: recall_at_5
            value: 13.364
      - task:
          type: Retrieval
        dataset:
          type: fiqa-pl
          name: MTEB FiQA-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.289
          - type: map_at_10
            value: 18.285999999999998
          - type: map_at_100
            value: 19.743
          - type: map_at_1000
            value: 19.964000000000002
          - type: map_at_3
            value: 15.193000000000001
          - type: map_at_5
            value: 16.962
          - type: mrr_at_1
            value: 21.914
          - type: mrr_at_10
            value: 30.653999999999996
          - type: mrr_at_100
            value: 31.623
          - type: mrr_at_1000
            value: 31.701
          - type: mrr_at_3
            value: 27.855
          - type: mrr_at_5
            value: 29.514000000000003
          - type: ndcg_at_1
            value: 21.914
          - type: ndcg_at_10
            value: 24.733
          - type: ndcg_at_100
            value: 31.253999999999998
          - type: ndcg_at_1000
            value: 35.617
          - type: ndcg_at_3
            value: 20.962
          - type: ndcg_at_5
            value: 22.553
          - type: precision_at_1
            value: 21.914
          - type: precision_at_10
            value: 7.346
          - type: precision_at_100
            value: 1.389
          - type: precision_at_1000
            value: 0.214
          - type: precision_at_3
            value: 14.352
          - type: precision_at_5
            value: 11.42
          - type: recall_at_1
            value: 10.289
          - type: recall_at_10
            value: 31.459
          - type: recall_at_100
            value: 56.854000000000006
          - type: recall_at_1000
            value: 83.722
          - type: recall_at_3
            value: 19.457
          - type: recall_at_5
            value: 24.767
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa-pl
          name: MTEB HotpotQA-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.669
          - type: map_at_10
            value: 41.615
          - type: map_at_100
            value: 42.571999999999996
          - type: map_at_1000
            value: 42.662
          - type: map_at_3
            value: 38.938
          - type: map_at_5
            value: 40.541
          - type: mrr_at_1
            value: 59.338
          - type: mrr_at_10
            value: 66.93900000000001
          - type: mrr_at_100
            value: 67.361
          - type: mrr_at_1000
            value: 67.38499999999999
          - type: mrr_at_3
            value: 65.384
          - type: mrr_at_5
            value: 66.345
          - type: ndcg_at_1
            value: 59.338
          - type: ndcg_at_10
            value: 50.607
          - type: ndcg_at_100
            value: 54.342999999999996
          - type: ndcg_at_1000
            value: 56.286
          - type: ndcg_at_3
            value: 46.289
          - type: ndcg_at_5
            value: 48.581
          - type: precision_at_1
            value: 59.338
          - type: precision_at_10
            value: 10.585
          - type: precision_at_100
            value: 1.353
          - type: precision_at_1000
            value: 0.161
          - type: precision_at_3
            value: 28.877000000000002
          - type: precision_at_5
            value: 19.133
          - type: recall_at_1
            value: 29.669
          - type: recall_at_10
            value: 52.92400000000001
          - type: recall_at_100
            value: 67.657
          - type: recall_at_1000
            value: 80.628
          - type: recall_at_3
            value: 43.315
          - type: recall_at_5
            value: 47.833
      - task:
          type: Retrieval
        dataset:
          type: msmarco-pl
          name: MTEB MSMARCO-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.997
          - type: map_at_10
            value: 7.481999999999999
          - type: map_at_100
            value: 20.208000000000002
          - type: map_at_1000
            value: 25.601000000000003
          - type: map_at_3
            value: 3.055
          - type: map_at_5
            value: 4.853
          - type: mrr_at_1
            value: 55.814
          - type: mrr_at_10
            value: 64.651
          - type: mrr_at_100
            value: 65.003
          - type: mrr_at_1000
            value: 65.05199999999999
          - type: mrr_at_3
            value: 62.403
          - type: mrr_at_5
            value: 64.031
          - type: ndcg_at_1
            value: 44.186
          - type: ndcg_at_10
            value: 43.25
          - type: ndcg_at_100
            value: 40.515
          - type: ndcg_at_1000
            value: 48.345
          - type: ndcg_at_3
            value: 45.829
          - type: ndcg_at_5
            value: 46.477000000000004
          - type: precision_at_1
            value: 55.814
          - type: precision_at_10
            value: 50.465
          - type: precision_at_100
            value: 25.419000000000004
          - type: precision_at_1000
            value: 5.0840000000000005
          - type: precision_at_3
            value: 58.14
          - type: precision_at_5
            value: 57.67400000000001
          - type: recall_at_1
            value: 0.997
          - type: recall_at_10
            value: 8.985999999999999
          - type: recall_at_100
            value: 33.221000000000004
          - type: recall_at_1000
            value: 58.836999999999996
          - type: recall_at_3
            value: 3.472
          - type: recall_at_5
            value: 5.545
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pl)
          config: pl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 68.19771351714861
          - type: f1
            value: 64.75039989217822
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pl)
          config: pl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.9677202420982
          - type: f1
            value: 73.72287107577753
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus-pl
          name: MTEB NFCorpus-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.167
          - type: map_at_10
            value: 10.791
          - type: map_at_100
            value: 14.072999999999999
          - type: map_at_1000
            value: 15.568000000000001
          - type: map_at_3
            value: 7.847999999999999
          - type: map_at_5
            value: 9.112
          - type: mrr_at_1
            value: 42.105
          - type: mrr_at_10
            value: 49.933
          - type: mrr_at_100
            value: 50.659
          - type: mrr_at_1000
            value: 50.705
          - type: mrr_at_3
            value: 47.988
          - type: mrr_at_5
            value: 49.056
          - type: ndcg_at_1
            value: 39.938
          - type: ndcg_at_10
            value: 31.147000000000002
          - type: ndcg_at_100
            value: 29.336000000000002
          - type: ndcg_at_1000
            value: 38.147
          - type: ndcg_at_3
            value: 35.607
          - type: ndcg_at_5
            value: 33.725
          - type: precision_at_1
            value: 41.486000000000004
          - type: precision_at_10
            value: 23.901
          - type: precision_at_100
            value: 7.960000000000001
          - type: precision_at_1000
            value: 2.086
          - type: precision_at_3
            value: 33.437
          - type: precision_at_5
            value: 29.598000000000003
          - type: recall_at_1
            value: 5.167
          - type: recall_at_10
            value: 14.244000000000002
          - type: recall_at_100
            value: 31.192999999999998
          - type: recall_at_1000
            value: 62.41799999999999
          - type: recall_at_3
            value: 8.697000000000001
          - type: recall_at_5
            value: 10.911
      - task:
          type: Retrieval
        dataset:
          type: nq-pl
          name: MTEB NQ-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 14.417
          - type: map_at_10
            value: 23.330000000000002
          - type: map_at_100
            value: 24.521
          - type: map_at_1000
            value: 24.604
          - type: map_at_3
            value: 20.076
          - type: map_at_5
            value: 21.854000000000003
          - type: mrr_at_1
            value: 16.454
          - type: mrr_at_10
            value: 25.402
          - type: mrr_at_100
            value: 26.411
          - type: mrr_at_1000
            value: 26.479000000000003
          - type: mrr_at_3
            value: 22.369
          - type: mrr_at_5
            value: 24.047
          - type: ndcg_at_1
            value: 16.454
          - type: ndcg_at_10
            value: 28.886
          - type: ndcg_at_100
            value: 34.489999999999995
          - type: ndcg_at_1000
            value: 36.687999999999995
          - type: ndcg_at_3
            value: 22.421
          - type: ndcg_at_5
            value: 25.505
          - type: precision_at_1
            value: 16.454
          - type: precision_at_10
            value: 5.252
          - type: precision_at_100
            value: 0.8410000000000001
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 10.428999999999998
          - type: precision_at_5
            value: 8.019
          - type: recall_at_1
            value: 14.417
          - type: recall_at_10
            value: 44.025
          - type: recall_at_100
            value: 69.404
          - type: recall_at_1000
            value: 86.18900000000001
          - type: recall_at_3
            value: 26.972
          - type: recall_at_5
            value: 34.132
      - task:
          type: Classification
        dataset:
          type: laugustyniak/abusive-clauses-pl
          name: MTEB PAC
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 66.55082536924412
          - type: ap
            value: 76.44962281293184
          - type: f1
            value: 63.899803692180434
      - task:
          type: PairClassification
        dataset:
          type: PL-MTEB/ppc-pairclassification
          name: MTEB PPC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 86.5
          - type: cos_sim_ap
            value: 92.65086645409387
          - type: cos_sim_f1
            value: 89.39157566302653
          - type: cos_sim_precision
            value: 84.51327433628319
          - type: cos_sim_recall
            value: 94.86754966887418
          - type: dot_accuracy
            value: 86.5
          - type: dot_ap
            value: 92.65086645409387
          - type: dot_f1
            value: 89.39157566302653
          - type: dot_precision
            value: 84.51327433628319
          - type: dot_recall
            value: 94.86754966887418
          - type: euclidean_accuracy
            value: 86.5
          - type: euclidean_ap
            value: 92.65086645409387
          - type: euclidean_f1
            value: 89.39157566302653
          - type: euclidean_precision
            value: 84.51327433628319
          - type: euclidean_recall
            value: 94.86754966887418
          - type: manhattan_accuracy
            value: 86.5
          - type: manhattan_ap
            value: 92.64975544736456
          - type: manhattan_f1
            value: 89.33852140077822
          - type: manhattan_precision
            value: 84.28781204111601
          - type: manhattan_recall
            value: 95.03311258278146
          - type: max_accuracy
            value: 86.5
          - type: max_ap
            value: 92.65086645409387
          - type: max_f1
            value: 89.39157566302653
      - task:
          type: PairClassification
        dataset:
          type: PL-MTEB/psc-pairclassification
          name: MTEB PSC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 95.64007421150278
          - type: cos_sim_ap
            value: 98.42114841894346
          - type: cos_sim_f1
            value: 92.8895612708018
          - type: cos_sim_precision
            value: 92.1921921921922
          - type: cos_sim_recall
            value: 93.59756097560977
          - type: dot_accuracy
            value: 95.64007421150278
          - type: dot_ap
            value: 98.42114841894346
          - type: dot_f1
            value: 92.8895612708018
          - type: dot_precision
            value: 92.1921921921922
          - type: dot_recall
            value: 93.59756097560977
          - type: euclidean_accuracy
            value: 95.64007421150278
          - type: euclidean_ap
            value: 98.42114841894346
          - type: euclidean_f1
            value: 92.8895612708018
          - type: euclidean_precision
            value: 92.1921921921922
          - type: euclidean_recall
            value: 93.59756097560977
          - type: manhattan_accuracy
            value: 95.82560296846012
          - type: manhattan_ap
            value: 98.38712415914046
          - type: manhattan_f1
            value: 93.19213313161876
          - type: manhattan_precision
            value: 92.49249249249249
          - type: manhattan_recall
            value: 93.90243902439023
          - type: max_accuracy
            value: 95.82560296846012
          - type: max_ap
            value: 98.42114841894346
          - type: max_f1
            value: 93.19213313161876
      - task:
          type: Classification
        dataset:
          type: PL-MTEB/polemo2_in
          name: MTEB PolEmo2.0-IN
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 68.40720221606648
          - type: f1
            value: 67.09084289613526
      - task:
          type: Classification
        dataset:
          type: PL-MTEB/polemo2_out
          name: MTEB PolEmo2.0-OUT
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 38.056680161943326
          - type: f1
            value: 32.87731504372395
      - task:
          type: Retrieval
        dataset:
          type: quora-pl
          name: MTEB Quora-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 65.422
          - type: map_at_10
            value: 79.259
          - type: map_at_100
            value: 80
          - type: map_at_1000
            value: 80.021
          - type: map_at_3
            value: 76.16199999999999
          - type: map_at_5
            value: 78.03999999999999
          - type: mrr_at_1
            value: 75.26
          - type: mrr_at_10
            value: 82.39699999999999
          - type: mrr_at_100
            value: 82.589
          - type: mrr_at_1000
            value: 82.593
          - type: mrr_at_3
            value: 81.08999999999999
          - type: mrr_at_5
            value: 81.952
          - type: ndcg_at_1
            value: 75.3
          - type: ndcg_at_10
            value: 83.588
          - type: ndcg_at_100
            value: 85.312
          - type: ndcg_at_1000
            value: 85.536
          - type: ndcg_at_3
            value: 80.128
          - type: ndcg_at_5
            value: 81.962
          - type: precision_at_1
            value: 75.3
          - type: precision_at_10
            value: 12.856000000000002
          - type: precision_at_100
            value: 1.508
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 35.207
          - type: precision_at_5
            value: 23.316
          - type: recall_at_1
            value: 65.422
          - type: recall_at_10
            value: 92.381
          - type: recall_at_100
            value: 98.575
          - type: recall_at_1000
            value: 99.85300000000001
          - type: recall_at_3
            value: 82.59100000000001
          - type: recall_at_5
            value: 87.629
      - task:
          type: Retrieval
        dataset:
          type: scidocs-pl
          name: MTEB SCIDOCS-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.52
          - type: map_at_10
            value: 6.814000000000001
          - type: map_at_100
            value: 8.267
          - type: map_at_1000
            value: 8.565000000000001
          - type: map_at_3
            value: 4.736
          - type: map_at_5
            value: 5.653
          - type: mrr_at_1
            value: 12.5
          - type: mrr_at_10
            value: 20.794999999999998
          - type: mrr_at_100
            value: 22.014
          - type: mrr_at_1000
            value: 22.109
          - type: mrr_at_3
            value: 17.8
          - type: mrr_at_5
            value: 19.42
          - type: ndcg_at_1
            value: 12.5
          - type: ndcg_at_10
            value: 12.209
          - type: ndcg_at_100
            value: 18.812
          - type: ndcg_at_1000
            value: 24.766
          - type: ndcg_at_3
            value: 10.847
          - type: ndcg_at_5
            value: 9.632
          - type: precision_at_1
            value: 12.5
          - type: precision_at_10
            value: 6.660000000000001
          - type: precision_at_100
            value: 1.6340000000000001
          - type: precision_at_1000
            value: 0.307
          - type: precision_at_3
            value: 10.299999999999999
          - type: precision_at_5
            value: 8.66
          - type: recall_at_1
            value: 2.52
          - type: recall_at_10
            value: 13.495
          - type: recall_at_100
            value: 33.188
          - type: recall_at_1000
            value: 62.34499999999999
          - type: recall_at_3
            value: 6.245
          - type: recall_at_5
            value: 8.76
      - task:
          type: PairClassification
        dataset:
          type: PL-MTEB/sicke-pl-pairclassification
          name: MTEB SICK-E-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 86.13942111699959
          - type: cos_sim_ap
            value: 81.47480017120256
          - type: cos_sim_f1
            value: 74.79794268919912
          - type: cos_sim_precision
            value: 77.2382397572079
          - type: cos_sim_recall
            value: 72.50712250712252
          - type: dot_accuracy
            value: 86.13942111699959
          - type: dot_ap
            value: 81.47478531367476
          - type: dot_f1
            value: 74.79794268919912
          - type: dot_precision
            value: 77.2382397572079
          - type: dot_recall
            value: 72.50712250712252
          - type: euclidean_accuracy
            value: 86.13942111699959
          - type: euclidean_ap
            value: 81.47478531367476
          - type: euclidean_f1
            value: 74.79794268919912
          - type: euclidean_precision
            value: 77.2382397572079
          - type: euclidean_recall
            value: 72.50712250712252
          - type: manhattan_accuracy
            value: 86.15980432123929
          - type: manhattan_ap
            value: 81.40798042612397
          - type: manhattan_f1
            value: 74.86116253239543
          - type: manhattan_precision
            value: 77.9491133384734
          - type: manhattan_recall
            value: 72.00854700854701
          - type: max_accuracy
            value: 86.15980432123929
          - type: max_ap
            value: 81.47480017120256
          - type: max_f1
            value: 74.86116253239543
      - task:
          type: STS
        dataset:
          type: PL-MTEB/sickr-pl-sts
          name: MTEB SICK-R-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 84.27525342551935
          - type: cos_sim_spearman
            value: 79.50631730805885
          - type: euclidean_pearson
            value: 82.07169123942028
          - type: euclidean_spearman
            value: 79.50631887406465
          - type: manhattan_pearson
            value: 81.98288826317463
          - type: manhattan_spearman
            value: 79.4244081650332
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl)
          config: pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 35.59400236598834
          - type: cos_sim_spearman
            value: 36.782560207852846
          - type: euclidean_pearson
            value: 28.546177668542942
          - type: euclidean_spearman
            value: 36.68394223635756
          - type: manhattan_pearson
            value: 28.45606963909248
          - type: manhattan_spearman
            value: 36.475975118547524
      - task:
          type: Retrieval
        dataset:
          type: scifact-pl
          name: MTEB SciFact-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 41.028
          - type: map_at_10
            value: 52.23799999999999
          - type: map_at_100
            value: 52.905
          - type: map_at_1000
            value: 52.945
          - type: map_at_3
            value: 49.102000000000004
          - type: map_at_5
            value: 50.992000000000004
          - type: mrr_at_1
            value: 43.333
          - type: mrr_at_10
            value: 53.551
          - type: mrr_at_100
            value: 54.138
          - type: mrr_at_1000
            value: 54.175
          - type: mrr_at_3
            value: 51.056000000000004
          - type: mrr_at_5
            value: 52.705999999999996
          - type: ndcg_at_1
            value: 43.333
          - type: ndcg_at_10
            value: 57.731
          - type: ndcg_at_100
            value: 61.18599999999999
          - type: ndcg_at_1000
            value: 62.261
          - type: ndcg_at_3
            value: 52.276999999999994
          - type: ndcg_at_5
            value: 55.245999999999995
          - type: precision_at_1
            value: 43.333
          - type: precision_at_10
            value: 8.267
          - type: precision_at_100
            value: 1.02
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 21.444
          - type: precision_at_5
            value: 14.533
          - type: recall_at_1
            value: 41.028
          - type: recall_at_10
            value: 73.111
          - type: recall_at_100
            value: 89.533
          - type: recall_at_1000
            value: 98
          - type: recall_at_3
            value: 58.744
          - type: recall_at_5
            value: 66.106
      - task:
          type: Retrieval
        dataset:
          type: trec-covid-pl
          name: MTEB TRECCOVID-PL
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.146
          - type: map_at_10
            value: 1.09
          - type: map_at_100
            value: 6.002
          - type: map_at_1000
            value: 15.479999999999999
          - type: map_at_3
            value: 0.41000000000000003
          - type: map_at_5
            value: 0.596
          - type: mrr_at_1
            value: 54
          - type: mrr_at_10
            value: 72.367
          - type: mrr_at_100
            value: 72.367
          - type: mrr_at_1000
            value: 72.367
          - type: mrr_at_3
            value: 70.333
          - type: mrr_at_5
            value: 72.033
          - type: ndcg_at_1
            value: 48
          - type: ndcg_at_10
            value: 48.827
          - type: ndcg_at_100
            value: 38.513999999999996
          - type: ndcg_at_1000
            value: 37.958
          - type: ndcg_at_3
            value: 52.614000000000004
          - type: ndcg_at_5
            value: 51.013
          - type: precision_at_1
            value: 54
          - type: precision_at_10
            value: 53.6
          - type: precision_at_100
            value: 40.300000000000004
          - type: precision_at_1000
            value: 17.276
          - type: precision_at_3
            value: 57.333
          - type: precision_at_5
            value: 55.60000000000001
          - type: recall_at_1
            value: 0.146
          - type: recall_at_10
            value: 1.438
          - type: recall_at_100
            value: 9.673
          - type: recall_at_1000
            value: 36.870999999999995
          - type: recall_at_3
            value: 0.47400000000000003
          - type: recall_at_5
            value: 0.721

Model Card for st-polish-kartonberta-base-alpha-v1

This sentence transformer model is designed to convert text content into a 768-float vector space, ensuring an effective representation. It aims to be proficient in tasks involving sentence / document similarity.

The model has been released in its alpha version. Numerous potential enhancements could boost its performance, such as adjusting training hyperparameters or extending the training duration (currently limited to only one epoch). The main reason is limited GPU.

Model Description

How to Get Started with the Model

Use the code below to get started with the model.

Using Sentence-Transformers

You can use the model with sentence-transformers:

pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer

model = SentenceTransformer('OrlikB/st-polish-kartonberta-base-alpha-v1')

text_1 = 'Jestem wielkim fanem opakowań tekturowych'
text_2 = 'Bardzo podobają mi się kartony'

embeddings_1 = model.encode(text_1, normalize_embeddings=True)
embeddings_2 = model.encode(text_2, normalize_embeddings=True)

similarity = embeddings_1 @ embeddings_2.T
print(similarity)

Using HuggingFace Transformers

from transformers import AutoTokenizer, AutoModel
import torch
import numpy as np

def encode_text(text):
    encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt', max_length=512)
    with torch.no_grad():
        model_output = model(**encoded_input)
        sentence_embeddings = model_output[0][:, 0]
        sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
    return  sentence_embeddings.squeeze().numpy()

cosine_similarity = lambda a, b: np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))


tokenizer = AutoTokenizer.from_pretrained('OrlikB/st-polish-kartonberta-base-alpha-v1')
model = AutoModel.from_pretrained('OrlikB/st-polish-kartonberta-base-alpha-v1')
model.eval()

text_1 = 'Jestem wielkim fanem opakowań tekturowych'
text_2 = 'Bardzo podobają mi się kartony'

embeddings_1 = encode_text(text_1)
embeddings_2 = encode_text(text_2)

print(cosine_similarity(embeddings_1, embeddings_2))

*Note: You can use the encode_text function for demonstration purposes. For the best experience, it's recommended to process text in batches.

Evaluation

MTEB for Polish Language

Rank Model Model Size (GB) Embedding Dimensions Sequence Length Average (26 datasets) Classification Average (7 datasets) Clustering Average (1 datasets) Pair Classification Average (4 datasets) Retrieval Average (11 datasets) STS Average (3 datasets)
1 multilingual-e5-large 2.24 1024 514 58.25 60.51 24.06 84.58 47.82 67.52
2 st-polish-kartonberta-base-alpha-v1 0.5 768 514 56.92 60.44 32.85 87.92 42.19 69.47
3 multilingual-e5-base 1.11 768 514 54.18 57.01 18.62 82.08 42.5 65.07
4 multilingual-e5-small 0.47 384 512 53.15 54.35 19.64 81.67 41.52 66.08
5 st-polish-paraphrase-from-mpnet 0.5 768 514 53.06 57.49 25.09 87.04 36.53 67.39
6 st-polish-paraphrase-from-distilroberta 0.5 768 514 52.65 58.55 31.11 87 33.96 68.78

More Information

I developed this model as a personal scientific initiative.

I plan to start the development on a new ST model. However, due to limited computational resources, I suspended further work to create a larger or enhanced version of current model.