Orbita-v0.1 / README.md
malhajar's picture
Update README.md
ac93226 verified
|
raw
history blame
4.14 kB
---
license: apache-2.0
language:
- tr
---
<img src="https://huggingface.co./Orbina/Orbita-v0.1/resolve/main/orbita.png"
alt="Orbita LLM" width="500"/>
# Orbita-v0.1
This model is a Turkish Large Language Model with multiple abilites across different dimensions on the Turkish Language covering a variety of Tasks like Coding,Math,...
This model is an extended version of a Qwen-based Large Language Model (LLM) for Turkish. It was trained on a cleaned Turkish dataset carefully annotated to carry out turkish instructions in an accurate and organized manner. This model was fully finetuned extensively on 8 H100 GPU's for 2 days using a carefully annotated Turkish dataset.
## Model Details
- **Base Model**: Qwen 14B based LLM
- **Training Dataset**: Annotated Turkish Dataset
- **Training Method**: Full Finetuning
## Usage Examples
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"Orbina/Orbita-v0.1",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-14B-Chat")
prompt = "türkiyenin inflasyonu nasıl çözebiliriz?"
messages = [
{"role": "system", "content": "Sen Orbina ai tarafından üretelen bir yapay zekasındır, soruları uygun bir şekilde cevap veriyorsun"},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Example Generations
```
Prompt:
Türkiyedeki 1990-2000 arasındaki olaylar özetli bir şekilde saydır
Cevap:
Türkiye, zengin tarihi ve doğal güzellikleriyle dünya çapında ünlüdür. İşte Türkiye'de gezebileceğiniz beş popüler yer:
1. **Ege Bölgesi**: Ege Bölgesi, İzmir ve Ege şehirlerini içerir ve turkuaz suları, güzel plajları ve antik tapınaklarıyla ünlüdür.
2. **Anadolu Yarımadası**: Anadolu Yarımadası'nda bulunan Cappadocia bölgesi, volkanik dağlar ve etkileyici manzaralarıyla dikkat çeker. Göreme Kalesi gibi tarihi yapılar bu bölgede bulunur.
3. **İzmit**: İzmit bölgesindeki Sakız Adası (Sakız Adası), özellikle yaz aylarında popüler bir tatil beldesidir çünkü güzel plajları ve sıcak iklimi ile bilinir.
4. **Bodrum**: Bodrum şehri, eski bir liman şehri olup tarihi anıtlarıyla ünlüdür. Mağara müzelerine sahip olan bu şehir aynı zamanda Bodrum Sarayı'na ev sahipliği yapmaktadır.
5. **Antalya**: Antalya kentindeki Alanya kasabası veya Kaşmir bölgesindeki Kemer kasabası gibi yerlerde tatil yapabilirsiniz; burada güzel plajlara ulaşabilirsiniz veya doğayla iç içe olabilirsiniz.
Bu örneklerden yola çıkarak Türkiye'nin birçok farklı bölgeyi keşfetmek mümkündür; her bir bölge kendine has özelliklere sahip olup ziyaretçilerine unutulmaz deneyimler sunmaktadır
```
```
Prompt:
bana bir python hesap makinese kod yaz
Cevap:
Python'da basit bir hesap makinesi oluşturmak için aşağıdaki örnek kodu kullanabilirsiniz.
Bu kod, kullanıcıdan iki sayı ve bir işlem alır ve sonucu ekrana yazdırır.
``python
Python'da "Hello, World!" yazmak için aşağıdaki basit kodu kullanabilirsiniz:
``python
print("Hello, World!")
``
Bu kodu bir Python dosyasına yapıştırarak ve ardından bu dosyayı çalıştırarak ekrana "Hello, World!" yazısını görebilirsiniz. Örneğin, `hello_world.py` adında bir dosya oluşturup içine bu kodu kopyalayıp kaydettikten sonra komut satırında (terminalde) şu komutu kullanarak çalıştırabilirsiniz:
``bash
python hello_world.py
``
Eğer Python yüklü değilse veya farklı bir Python sürümü kullanıyorsanız (örneğin Python 2), uygun olan komutları kullanmalısınız.
```