|
--- |
|
license: apache-2.0 |
|
language: |
|
- tr |
|
--- |
|
|
|
<img src="https://huggingface.co./Orbina/Orbita-v0.1/resolve/main/orbita.png" |
|
alt="Orbita LLM" width="500"/> |
|
|
|
# Orbita-v0.1 |
|
|
|
This model is an extended version of a Qwen-based Large Language Model (LLM) for Turkish. It was trained on a cleaned Turkish dataset carefully annotated to carry out turkish instructions in an accurate and organized manner. This model was fully finetuned extensively on 8 H100 GPU's for 2 days using a carefully annotated Turkish dataset. |
|
## Model Details |
|
|
|
- **Base Model**: Qwen 14B based LLM |
|
- **Training Dataset**: Annotated Turkish Dataset |
|
- **Training Method**: Full Finetuning |
|
|
|
## Usage Examples |
|
|
|
```python |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"Qwen/Qwen1.5-14B-Chat", |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-14B-Chat") |
|
|
|
prompt = "türkiyenin inflasyonu nasıl çözebiliriz?" |
|
messages = [ |
|
{"role": "system", "content": "Sen Orbina ai tarafından üretelen bir yapay zekasındır, soruları uygun bir şekilde cevap veriyorsun"}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
|