metadata
tags:
- merge
- mergekit
- lazymergekit
- SuperAGI/SAM
- GoogleAI/Gemini
- bigscience/bloom
- openai/opt-175b
- deepmind/gopher
- microsoft/megatron-turing-nlg
base_model:
- SuperAGI/SAM
- GoogleAI/Gemini
- bigscience/bloom
- openai/opt-175b
- deepmind/gopher
- microsoft/megatron-turing-nlg
SAM-Gemini-BLOOM-OPT-Gopher-Megatron-slerp
SAM-Gemini-BLOOM-OPT-Gopher-Megatron-slerp is a merge of the following models using LazyMergekit:
- SuperAGI/SAM
- GoogleAI/Gemini
- bigscience/bloom
- openai/opt-175b
- deepmind/gopher
- microsoft/megatron-turing-nlg
🧩 Configuration
slices:
- sources:
- model: SuperAGI/SAM
layer_range: [0, 32]
- model: GoogleAI/Gemini
layer_range: [0, 32]
- model: bigscience/bloom
layer_range: [0, 32]
- model: openai/opt-175b
layer_range: [0, 32]
- model: deepmind/gopher
layer_range: [0, 32]
- model: microsoft/megatron-turing-nlg
layer_range: [0, 32]
merge_method: slerp
base_model: SuperAGI/SAM
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat1
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Or4cl3-1/SAM-Gemini-BLOOM-OPT-Gopher-Megatron-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])