metadata
license: cc-by-nc-4.0
tags:
- vision
- video-classification
VideoMAE-v2 (base-sized model, Pretrained on UnlabeledHybrid-1M)
VideoMAEv2-Base model pre-trained for 800 epochs in a self-supervised way on UnlabeldHybrid-1M dataset. It was introduced in the paper [CVPR23]VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking by Wang et al. and first released in GitHub.
Intended uses & limitations
You can use the raw model for video feature extraction.
How to use
Here is how to use this model to extract a video feature:
from transformers import VideoMAEImageProcessor, AutoModel, AutoConfig
import numpy as np
import torch
config = AutoConfig.from_pretrained("./", trust_remote_code=True)
model = AutoModel.from_pretrained('./', config=config, trust_remote_code=True)
video = list(np.random.rand(16, 3, 224, 224))
processor = VideoMAEImageProcessor.from_pretrained("./")
model = AutoModel.from_pretrained("./",config=config, trust_remote_code=True)
# B, T, C, H, W -> B, C, T, H, W
inputs = processor(video, return_tensors="pt")
inputs['pixel_values'] = inputs['pixel_values'].permute(0, 2, 1, 3, 4)
with torch.no_grad():
outputs = model(**inputs)
BibTeX entry and citation info
@InProceedings{wang2023videomaev2,
author = {Wang, Limin and Huang, Bingkun and Zhao, Zhiyu and Tong, Zhan and He, Yinan and Wang, Yi and Wang, Yali and Qiao, Yu},
title = {VideoMAE V2: Scaling Video Masked Autoencoders With Dual Masking},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {14549-14560}
}
@misc{videomaev2,
title={VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking},
author={Limin Wang and Bingkun Huang and Zhiyu Zhao and Zhan Tong and Yinan He and Yi Wang and Yali Wang and Yu Qiao},
year={2023},
eprint={2303.16727},
archivePrefix={arXiv},
primaryClass={cs.CV}
}